首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3044篇
  免费   62篇
  国内免费   100篇
测绘学   149篇
大气科学   463篇
地球物理   373篇
地质学   870篇
海洋学   327篇
天文学   870篇
综合类   22篇
自然地理   132篇
  2022年   23篇
  2021年   26篇
  2020年   43篇
  2019年   40篇
  2018年   48篇
  2017年   159篇
  2016年   116篇
  2015年   190篇
  2014年   182篇
  2013年   260篇
  2012年   115篇
  2011年   139篇
  2010年   154篇
  2009年   194篇
  2008年   101篇
  2007年   140篇
  2006年   108篇
  2005年   99篇
  2004年   74篇
  2003年   80篇
  2002年   78篇
  2001年   47篇
  2000年   45篇
  1999年   73篇
  1998年   31篇
  1997年   31篇
  1996年   23篇
  1995年   17篇
  1994年   22篇
  1993年   20篇
  1992年   15篇
  1991年   21篇
  1990年   26篇
  1989年   17篇
  1988年   26篇
  1987年   43篇
  1986年   19篇
  1985年   29篇
  1984年   31篇
  1983年   38篇
  1982年   28篇
  1981年   24篇
  1980年   14篇
  1979年   18篇
  1978年   20篇
  1977年   21篇
  1976年   23篇
  1975年   15篇
  1974年   26篇
  1973年   22篇
排序方式: 共有3206条查询结果,搜索用时 78 毫秒
41.
An ephemeral estuarine turbidity maximum (ETM) occurs at high water in the macrotidal Taf estuary (SW Wales, United Kingdom). A new mechanism of ETM formation, due to resuspension and advection of material by flood tidal currents, is observed that differs from classical mechanisms of gravitational circulation and tidal pumping. The flood tide advances across intertidal sand flats in the main body of the estuary, progressively entraining material from the rippled sands. Resuspension creates, a turbid front that has suspended sediment concentrations (SSC) of about 4,000 mg I−1 by the time it reaches its landward limit which is also the landward limit of salt penetration. This turbid body constitutes the ETM. Deposition occurs at high slack water but the ETM retains SSC values up to 800 mg I−1, 1–2 orders of magnitude greater than ambient SSC values in the river and estuarine waters on either side. The ETM retreats down the estuary during the ebb; some material is deposited thinly across emergent intertidal flats and some is flushed out of the estuary. A new ETM is generated by the next flood tide. Both location and SSC of the ETM scale on Q/R3 where Q is tidal range and R is river discharge. The greatest expression of the ETM occurs when a spring tide coincides with low river discharge. It does not form during high river discharge conditions and is poorly developed on neap tides. Particles in the ETM have effective densities (120–160 kg m−3) that are 3–4 times less than those in the main part of the estuary at high water. High chlorophyll concentrations in the ETM suggest that flocs probably originate from biological production in the estuary, including production on the intertidal sand flats.  相似文献   
42.
《Chemical Geology》2006,225(1-2):30-39
The discovery of mass-independent isotope effects observed in Archean rocks, certain classes of meteorites, and atmospheric aerosols has had profound implications to our understanding of ancient and present atmospheric sulfur chemistry. We present a new technique that takes advantage of continuous He flow isotope-ratio-monitoring gas chromatography–mass spectrometry to achieve precise analysis of all four stable sulfur isotopes (32S, 33S, 34S, and 36S) at nanomole level samples. The technique involves fluorination of sulfide (silver sulfide or pyrite), and separation of product gas by gas chromatography and the removal of mass-131 interference by a liquid-nitrogen ethanol slush at − 110 °C. This technique works with an optimum sample size of 100 to 200 nmol with precision for Δ33S and Δ36S at 0.1 and 0.5‰ (2σ). Samples, as small as tens of nanomole, can be analyzed using this new method. One of the major sources of error in irm-GCMS is found to be tailing of the major ion beam (32SF5+) onto minor beams (33SF5+ and 36SF5+), which results in contraction of the measured δ33S and δ36S scales. This effect is corrected by measuring a series of reference sulfide samples with mass-dependent sulfur isotope compositions. This methodology increases the spatial resolution of the laser ablation in situ analysis and considerably reduces the analysis time as compared with conventional dual inlet methods.  相似文献   
43.
Lake Qarun has been profoundly affected by a combination of human activities and climatic changes during the past 5000 years. Instrumental records available for the 20th century show that during most of this period both lake water level and salinity increased and that by the late 1980s lake water salinity was approximately that of seawater. Sediment cores (c. 1 m long) were collected from this shallow (Zmax 8.4 m) saline lake in 1998 and the master core (QARU1) was used to examine the potential of paleolimnology for reconstructing the recent environmental history of the site. According to 137Cs and 210Pb radio-assay, the recent sediment accumulation rate in QARU1 was around 5 mm year−1 during the latter half of the 20th century but radionuclide levels were low. Spheroidal carbonaceous particles (SCPs) were present in the upper c. 30 cm of QARU1 and indicates contamination by low level particulate pollution, probably beginning around 1950. The record of exotic pollen (Casuarina) indicated that sediment at 51–52 cm depth dated to around 1930. Otherwise the pollen spectra indicated a strongly disturbed landscape with high ruderals and increased tree planting particularly since c. 1950. Diatom records were strongly affected by taphonomic processes including reworking and differential preservation but typical marine diatoms increased after the 1920s. Instrumental records show that the lake became more saline at this time. Freshwater taxa were present at approximately similar abundances throughout the core. This distribution probably reflected a combination of processes. Reworking of ancient freshwater diatomites is one likely source for freshwater diatoms in QARU1 but some taxa must also be contributed via the freshwater inflows. Overall, the diatom stratigraphy indicated increasingly salinity since the 1920s but provided no firm evidence of lake eutrophication. Diatom inferred salinity reconstructions were in only partial agreement with instrumental records but inferred for the lower section of the core (pre 20th century to the 1960s) accord with measured water salinity values. Surficial sediments of Lake Qarun contain environmental change records for the 20th century period but high sediment accumulation rate and pollen reflect the high degree of human disturbance in the region. Because of poor preservation and evidence of reworking, the relationships between diatom records and past water quality changes require careful interpretation, especially in the upper section of the core. Nevertheless, early to mid 20th century measurements of increasing lake water salinity are well supported by sediment records, a change that is probably linked to ingress of saline ground water  相似文献   
44.
The Legs Lake shear zone marks the southeastern boundary of an extensive region (>20,000 km2) of high-pressure (0.8–1.5+ GPa) granulite-facies rocks in the western Churchill Province, Canada. The shear zone is one of the largest exhumation-related structures in the Canadian Shield and coincides with the central segment of the ∼2,800 km long Snowbird tectonic zone. The movement history of this shear zone is critical for the development of models for the exhumation history of the high-pressure region. We used electron microprobe U–Th–Pb dating of monazite with supplemental ID-TIMS U–Pb geochronology to place constraints on the timing of shear zone activity. Combining these and other data, we suggest that regional exhumation occurred during at least three distinct phases over an ∼150 million year period. The first phase involved high temperature decompression from ∼1.0 to 0.8–0.7 GPa shortly following 1.9 Ga peak metamorphism, possibly under an extensional regime. The second phase involved rock uplift and decompression of the hanging wall to 0.5–0.4 GPa during east-vergent thrusting across the Legs Lake shear zone at ca. 1.85 Ga. This phase was likely driven by early collision-related convergence in the Trans-Hudson orogen. The final phase of regional exhumation, involving the removal of 15–20 km of overburden from both footwall and hanging wall, likely occurred after ∼1.78 Ga and may have been related to regional extensional faulting.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
45.
The present work was aimed to compare the abilities of radar and optical satellite data to estimate crop canopy cover, which is a key component of productivity estimates. Three ERS-1 SAR images were obtained of East Anglia (UK) in 1995 and one ERS-2 SAR image in 1996. The images covered a study area around the IACR Brooms Barn Sugar Beet Research Institute. Field data comprising radiometric and biophysical measurements of the crop canopy were collected in two fields from June 22 to August 3, 1995 to coincide with ERS-1 SAR overpass dates. In 1996, field data were collected in two fields from June 11 to July 29 on a weekly basis. A previously calibrated version of the water cloud model was inverted to estimate Leaf Area Index (LAI) from ERS-1 and ERS-2 SAR backscatter and soil moisture samples. Canopy cover was estimated from the radar-estimated LAI using a standard exponential relationship that has a well-established coefficient for sugar beet. Radio-metrically and atmospherically corrected data from three SPOT images in 1995 and one SPOT image in 1996 were used to calculate the Optimised Soil Adjusted Vegetation Index (OSAVI), from which crop canopy cover was estimated using a relationship determined previously by canopy modelling. The crop cover values estimated by satellite were in good agreement with those measured on ground with the Parkinson radiometer. Radar data may be able to provide useful estimates of canopy cover for crop production modelling, especially in the case of loss of optical data due to cloud.  相似文献   
46.
Using Remote Sensing to Assess Russian Forest Fire Carbon Emissions   总被引:7,自引:0,他引:7  
Russian boreal forests are subject to frequent wildfires. The resulting combustion of large amounts of biomass not only transforms forest vegetation, but it also creates significant carbon emissions that total, according to some authors, from 35–94 Mt C per year. These carbon emissions from forest fires should be considered an important part of the forest ecosystem carbon balance and a significant influence on atmospheric trace gases. In this paper we discuss a new method to assess forest fire damage. This method is based on using multi-spectral high-resolution satellite images, large-scale aerial photography, and declassified images obtained from the space-borne national security systems. A normalized difference vegetation index (NDVI) difference image was produced from pre- and post-fire satellite images from SPOT/HRVIR and RESURS-O/MSU-E images. A close relationship was found between values of the NDVI difference image and forest damage level. High-resolution satellite data and large-scale aerial-photos were used to calibrate the NDVI-derived forest damage map. The method was used for mapping of forest fire extent and damage and for estimating carbon emissions from burned forest areas.  相似文献   
47.
The effects of the Indonesian throughflow on the upper thermocline circulation and surface heat flux over the Indian Ocean are presented for a 3-D ocean model forced by two different monthly wind-stress climatologies, as they show interesting differences, which could have implications for long-term variability in the Indian and Australasian monsoons. The effects are determined by contrasting a control run with a run in which the throughflow is blocked by an artificial land-bridge across the exit channels into the Indian Ocean. In the model forced by ECMWF wind stresses, there is little impact on the annual mean surface heat flux in the region surrounding the throughflow exit straits, whereas in the model forced by SSM/I-based wind stresses, a modest throughflow of less than 5 ᎒6 m3s-1 over the upper 300 m induces an extra 10-50 Wm-2 output. In the SSM/I-forced model, there is insignificant penetration of the throughflow into the northern Indian Ocean. However, in the ECMWF-forced model, the throughflow induces a 5-10 Wm-2 reduction in heat input into the ocean, i.e., an effective output, over the Somali Current in the annual mean. These differences are attributed to differences in the strength and direction of the Ekman transport of the ambient flow, and the vertical structure of the transport and temperature anomalies associated with the throughflow. In both models, the throughflow induces a 5-30 Wm-2 increase in net output over a broad swathe of the southern Indian Ocean, and a reduction in heat output of 10-60 Wm-2 in a large L-shaped band around Tasmania. Effective increases in throughflow-induced net output reach up to 40 (60) Wm-2 over the Agulhas Current retroflection in the ECMWF (SSM/I)-forced model. Seasonal variations in the throughflow's effect on the net surface heat flux are attributed to seasonal variations in the ambient circulation of the Indian Ocean, specifically in coastal upwelling along the south Javan, west Australian, and Somalian coasts, and in the depth of convective overturning between 40°S to 50°S, and its sensing of the mean throughflow's thermal anomaly. The seasonal anomalies plus annual mean yield maximum values for the throughflow-induced net surface heat output in boreal summer. Values may exceed 40 Wm-2 in the southern Indian Ocean interior in both models, exceed 60 Wm-2 over the Agulhas retroflection and immediate vicinity of the exit channels in the SSM/I-forced model, and reach 30 Wm-2 over the Somali jet in the ECMWF-forced model.  相似文献   
48.
A suite of 47 carbonaceous, enstatite, and ordinary chondrites are examined for Re-Os isotopic systematics. There are significant differences in the 187Re/188Os and 187Os/188Os ratios of carbonaceous chondrites compared with ordinary and enstatite chondrites. The average 187Re/188Os for carbonaceous chondrites is 0.392 ± 0.015 (excluding the CK chondrite, Karoonda), compared with 0.422 ± 0.025 and 0.421 ± 0.013 for ordinary and enstatite chondrites (1σ standard deviations). These ratios, recast into elemental Re/Os ratios, are as follows: 0.0814 ± 0.0031, 0.0876 ± 0.0052 and 0.0874 ± 0.0027, respectively. Correspondingly, the 187Os/188Os ratios of carbonaceous chondrites average 0.1262 ± 0.0006 (excluding Karoonda), and ordinary and enstatite chondrites average 0.1283 ± 0.0017 and 0.1281 ± 0.0004, respectively (1σ standard deviations). The new results indicate that the Re/Os ratios of meteorites within each group are, in general, quite uniform. The minimal overlap between the isotopic compositions of ordinary and enstatite chondrites vs. carbonaceous chondrites indicates long-term differences in Re/Os for these materials, most likely reflecting chemical fractionation early in solar system history.A majority of the chondrites do not plot within analytical uncertainties of a 4.56-Ga reference isochron. Most of the deviations from the isochron are consistent with minor, relatively recent redistribution of Re and/or Os on a scale of millimeters to centimeters. Some instances of the redistribution may be attributed to terrestrial weathering; others are most likely the result of aqueous alteration or shock events on the parent body within the past 2 Ga.The 187Os/188Os ratio of Earth’s primitive upper mantle has been estimated to be 0.1296 ± 8. If this composition was set via addition of a late veneer of planetesimals after core formation, the composition suggests the veneer was dominated by materials that had Re/Os ratios most similar to ordinary and enstatite chondrites.  相似文献   
49.
Changes in Global Monsoon Circulations Since 1950   总被引:6,自引:0,他引:6  
Chase  T. N.  Knaff  J. A.  Pielke  R. A.  Kalnay  E. 《Natural Hazards》2003,29(2):229-254
We examined changes in several independent intensity indices of four majortropical monsoonal circulations for the period 1950–1998. Theseintensity indices included observed land surface precipitation andobserved ocean surface pressure in the monsoon regions aswell as upper-level divergence calculated at severalstandard levels from the NCAR/NCEP reanalysis. These values wereaveraged seasonally over appropriate regions of southeastern Asian, western Africa, eastern Africa and the Australia/Maritime continent and adjacent ocean areas. Asa consistency check we also examined two secondary indices: mean sea level pressure trends and low level convergence both from theNCEP reanalysis.We find that in each of the four regions examined, a consistentpicture emerges indicating significantly diminished monsoonalcirculations over the period of record, evidence of diminished spatialmaxima in the global hydrological cycle since 1950. Trends since 1979,the period of strongest reported surface warming, do not indicate any change inmonsoon circulations. When strong ENSO years are removed from each of the time series the trends still show a general, significant reduction of monsoon intensity indicating that ENSO variability is not the direct cause for the observed weakening.Most previously reported model simulations of theeffects of rising CO2 show an increase in monsoonal activity withrising global surface temperature. We find no support in these datafor an increasing hydrological cycle or increasing extremes as hypothesized bygreenhouse warming scenarios.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号