首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   369篇
  免费   121篇
  国内免费   255篇
测绘学   8篇
大气科学   475篇
地球物理   68篇
地质学   79篇
海洋学   7篇
天文学   6篇
综合类   6篇
自然地理   96篇
  2024年   1篇
  2023年   8篇
  2022年   27篇
  2021年   30篇
  2020年   19篇
  2019年   29篇
  2018年   38篇
  2017年   39篇
  2016年   37篇
  2015年   59篇
  2014年   51篇
  2013年   59篇
  2012年   65篇
  2011年   56篇
  2010年   47篇
  2009年   58篇
  2008年   16篇
  2007年   32篇
  2006年   45篇
  2005年   12篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1993年   1篇
排序方式: 共有745条查询结果,搜索用时 187 毫秒
41.
Lidar methods for observing mineral dust aerosols are reviewed.These methods include Mie scattering lidars,polarization lidars,Raman scattering lidars,high-spectral-resolution lidars,and fluorescence lidars.Some of the lidar systems developed by the authors and the results of the observations and applications are introduced.The largest advantage of the lidar methods is that they can observe vertical distribution of aerosols continuously with high temporal and spatial resolutions.Networks of ground-based lidars provide useful data for understanding the distribution and movement of mineral dust and other aerosols.The lidar network data are actually used for validation and assimilation of dust transport models,which can evaluate emission,transport,and deposition of mineral dust.The lidar methods are also useful for measuring the optical characteristics of aerosols that are essential to assess the radiative effects of aerosols.Evolution of the lidar data analysis methods for aerosol characterization is also reviewed.Observations from space and ground-based networks are two important approaches with the lidar methods in the studies of the effects of mineral dust and other aerosols on climate and the environment.Directions of the researches with lidar methods in the near future are discussed.  相似文献   
42.
陇中黄土高原夏季陆面辐射和热量特征研究   总被引:4,自引:1,他引:3  
李宏宇  张强  王胜 《地球科学进展》2010,25(10):1070-1081
利用兰州大学半干旱气候与环境观测站(SACOL)的观测资料,分析了陇中黄土高原夏季陆面辐射和热量收支的特征.通过研究不同典型天气条件对陆面过程微气象特征的影响,发现地表反射率在晴天会出现早晨偏大的不对称结构;晴天与多云天气相比不平衡量较大,而阴天时的阵性降水会使局地能量收支出现不平衡.利用最小二乘法(OLS)线性回归得到的夏季平均不闭合度是19.6%.在半干旱区云和降水对辐射和能量收支的影响不容忽视,达到约25%的削弱程度,比极端干旱的敦煌荒漠区要大,又进一步证明了半干旱区夏季的平均气候特征与云量较多的多云天气(5≤Mean total cloud amount<8)接近.另外,7月日平均波恩比最大是4.1,平均是1.95,比极端干旱区的敦煌波恩比小1个数量级,说明榆中所处的黄土高原半干旱区比敦煌所处的极端干旱区在气候上要湿润很多.  相似文献   
43.
黄土高原半干旱区异常能量闭合率特征分析   总被引:1,自引:0,他引:1  
以兰州大学半干旱气候与环境观测站(简称SACOL站)4 a的陆面通量数据为基础,利用普通最小二乘法(OLS)和能量平衡比率(EBR)方法,对能量平衡的异常闭合特征及其与相对垂直湍强(RIw)的关系进行了研究,并进行了能量滞后分析。结果表明,能量过闭合和负闭合现象分别主要发生在白天和夜间,大小遵从正态分布;较大异常闭合产生的原因主要是日出日落时净辐射与地表热通量接近以及降水影响造成湍流通量出现异常大值。一般来说,垂直湍流运动越强,异常闭合越少,闭合度越向1收敛,反之亦然。强湍流或极弱湍流都不利于产生异常闭合,过闭合、负闭合的最适相对垂直湍强RIw约为0.11、0.14。另外,能量支出项的相对滞后也是造成包括负闭合在内的异常闭合的原因之一。剔除湍强较弱的点或将地表热通量G0、感热H、潜热LE相位相对净辐射Rn提前30 min后,异常闭合所占比重减少;月平均EBR法过闭合度降低,OLS法闭合度提高。  相似文献   
44.
CLM4.0模式对中国区域土壤湿度的数值模拟及评估研究   总被引:7,自引:2,他引:5  
本文利用普林斯顿大学全球大气强迫场资料,驱动公用陆面过程模式(Community Land Model version 4.0,CLM4.0)模拟了中国区域1961~2010年土壤湿度的时空变化。将模拟结果与观测结果、美国国家环境预报中心再分析数据(National Centers for Environmental Prediction Reanalysis,NCEP)和高级微波扫描辐射计(Advanced Microwave Scanning Radiometer-EOS,AMSR-E)反演的土壤湿度进行了对比分析,结果表明CLM4.0模拟结果可以反映出中国区域观测土壤湿度的空间分布和时空变化特征,但东北、江淮和河套三个地区模拟值相对于观测值在各层次均系统性偏大。模拟与NCEP再分析土壤湿度的空间分布基本一致,与AMSR-E的反演值在35°N以北的分布也基本一致;从1961~2010年土壤湿度模拟结果分析得出,各层土壤湿度空间分布从西北向东南增加。低值区主要分布在新疆、青海、甘肃和内蒙古西部地区。东北平原、江淮地区和长江流域为高值区。土壤湿度数值总体上从浅层向深层增加。不同深度土壤湿度变化趋势基本相同。除新疆西部和东北部分地区外,土壤湿度在35°N以北以减少趋势为主,30°N以南的长江流域、华南及西南地区以增加为主。在全球气候变暖的背景下,CLM4.0模拟的夏季土壤湿度在不同程度上响应了降水的变化。中国典型干旱区和半干旱区土壤湿度减小,湿润区增加。其中湿润区土壤湿度对降水的响应最为显著,其次是半干旱区和干旱区。  相似文献   
45.
总结了自主研制的MWP967KV型地基35通道微波辐射计系统设计原理和主要特点。系统将K、V双频段宽带天线及接收机、宽带调谐本振、温湿压计以及电源模块紧凑集成为一台整机设备。对各传感器的测量输出实时进行一体化综合处理,采用BP神经网络实时反演大气温度、湿度廓线和汽、水总量。廓线的垂直覆盖范围为地表至顶空10km,共划分为58层。辐射计样机于2012年秋冬季节在北京地区开展了为期2个月的观测试验,利用这段时期内的69个探空资料样本对辐射计2个层次的实时观测输出都进行了对比检验,计算了水汽、氧气通道亮温和反演所得大气温湿廓线的平均偏差、均方差以及相关性。结果表明该系统能够满足实时气象监测的需求,达到国际先进水平。  相似文献   
46.
Remotely and accurately quantifying the canopy nitrogen status in crops is essential for regional studies of N budgets and N balances. In this study, we optimised three-band spectral algorithms to estimate the N status of winter wheat. This study extends previous work to optimise the band combinations further and identifies the optimised central bands and suitable bandwidths of the three-band nitrogen planar domain index (NPDI) for estimating the aerial N uptake, N concentration and aboveground biomass. Analysis of the influence of bandwidth change on the accuracy of estimating the canopy N status and aboveground biomass indicated that the suitable bandwidths for optimised central bands were 37 nm at 846 nm, 13 nm at 738 nm and 57 nm at 560 nm for assessing the aerial N uptake and were 37 nm at 958 nm, 21 nm at 696 nm and 73 nm at 578 nm for the assessment of the aerial N concentration and were 49 nm at 806 nm, 17 nm at 738 nm and 57 nm at 560 nm for the estimation of aboveground biomass. The optimised three-band NPDI could consistently and stably estimate the aerial N uptake and aboveground biomass of winter wheat in the vegetative stage and the aerial N concentration in the reproductive stage compared to the fixed band combinations. With suitable bandwidths, the broadband NPDI demonstrated excellent performance in estimating the aerial N concentration, N uptake and biomass. We conclude that the band-optimised algorithm represents a promising tool to measure the improved performance of the NPDI in estimating the aerial N uptake and biomass in the vegetative stage and the aerial N concentration in the reproductive stage, which will be useful for designing improved nitrogen diagnosis systems and for enhancing the applications of ground- and satellite-based sensors.  相似文献   
47.
Using a state-of-the-art chemistry-climate model,we analyzed the atmospheric responses to increases in sea surface temperature (SST).The results showed that increases in SST and the SST meridional gradient could intensify the subtropical westerly jets and significantly weaken the northern polar vortex.In the model runs,global uniform SST increases produced a more significant impact on the southern stratosphere than the northern stratosphere,while SST gradient increases produced a more significant impact on the northern stratosphere.The asymmetric responses of the northern and southern polar stratosphere to SST meridional gradient changes were found to be mainly due to different wave properties and transmissions in the northern and southern atmosphere.Although SST increases may give rise to stronger waves,the results showed that the effect of SST increases on the vertical propagation of tropospheric waves into the stratosphere will vary with height and latitude and be sensitive to SST meridional gradient changes.Both uniform and non-uniform SST increases accelerated the large-scale Brewer-Dobson circulation (BDC),but the gradient increases of SST between 60°S and 60°N resulted in younger mean age-of-air in the stratosphere and a larger increase in tropical upwelling,with a much higher tropopause than from a global uniform 1.0 K SST increase.  相似文献   
48.
Atmospheric aerosols influence the earth's radiative balance directly through scattering and absorbing solar radiation, and indirectly through affecting cloud properties. An understanding of aerosol optical properties is fundamental to studies of aerosol effects on climate. Although many such studies have been undertaken, large uncertainties in describing aerosol optical characteristics remain, especially regarding the absorption properties of different aerosols. Aerosol radiative effects are considered as either positive or negative perturbations to the radiation balance, and they include direct, indirect (albedo effect and cloud lifetime effect), and semi-direct effects. The total direct effect of anthropogenic aerosols is negative (cooling), although some components may contribute a positive effect (warming). Both the albedo effect and cloud lifetime effect cool the atmosphere by increasing cloud optical depth and cloud cover, respectively. Absorbing aerosols, such as carbonaceous aerosols and dust, exert a positive forcing at the top of atmosphere and a negative forcing at the surface, and they can directly warm the atmosphere. Internally mixed black carbon aerosols produce a stronger warming effect than externally mixed black carbon particles do. The semi-direct effect of absorbing aerosols could amplify this warming effect. Based on observational (ground-and satellite-based) and simulation studies, this paper reviews current progress in research regarding the optical properties and radiative effects of aerosols and also discusses several important issues to be addressed in future studies.  相似文献   
49.
The impact of asymmetric thermal forcing associated with land–sea distribution on interdecadal variation in large-scale circulation and blocking was investigated using observations and the coupled model intercomparison project outputs. A land–sea index (LSI) was defined to measure asymmetric zonal thermal forcing; the index changed from a negative to a positive anomaly in the 1980s. In the positive phase of the LSI, the 500 hPa geopotential height decreased in the polar regions and increased in the mid-latitudes. The tropospheric planetary wave activity also became weaker and exerted less easterly forcing on the westerly wind. These circulation changes were favorable for westerly wind acceleration and reduced blocking. In the Atlantic, the duration of blocking decreased by 38 % during the positive LSI phase compared with that during the negative phase; in Europe, the number of blocking persisting for longer than 10 days during the positive LSI phase was only half of the number during the negative phase. The observed surface air temperature anomaly followed a distinctive “cold ocean/warm land” (COWL) pattern, which provided an environment that reduced, or destroyed, the resonance forcing of topography and was unfavorable for the development and persistence of blocking. In turn, the responses of the westerly and blocking could further enhance continental warming, which would strengthen the “cold ocean/warm land” pattern. This positive feedback amplified regional warming in the context of overall global warming.  相似文献   
50.
In the Ensemble Kalman Filter (EnKF) data assimilation-prediction system, most of the computation time is spent on the prediction runs of ensemble members. A limited or small ensemble size does reduce the computational cost, but an excessively small ensemble size usually leads to filter divergence, especially when there are model errors. In order to improve the efficiency of the EnKF data assimilation-prediction system and prevent it against filter divergence, a time-expanded sampling approach for EnKF based on the WRF (Weather Research and Forecasting) model is used to assimilate simulated sounding data. The approach samples a series of perturbed state vectors from Nb member prediction runs not only at the analysis time (as the conventional approach does) but also at equally separated time levels (time interval is △t) before and after the analysis time with M times. All the above sampled state vectors are used to construct the ensemble and compute the background covariance for the analysis, so the ensemble size is increased from Nb to Nb+2M£Nb=(1+2M)×Nb) without increasing the number of prediction runs (it is still Nb). This reduces the computational cost. A series of experiments are conducted to investigate the impact of △t (the time interval of time-expanded sampling) and M (the maximum sampling times) on the analysis. The results show that if △t and M are properly selected, the time-expanded sampling approach achieves the similar effect to that from the conventional approach with an ensemble size of (1+2M)×Nb, but the number of prediction runs is greatly reduced.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号