首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   4篇
  国内免费   6篇
大气科学   16篇
地球物理   29篇
地质学   16篇
海洋学   33篇
天文学   13篇
自然地理   2篇
  2021年   1篇
  2016年   2篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   5篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   6篇
  1994年   2篇
  1992年   3篇
  1991年   1篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
1.
We investigated the molecular composition (methane, ethane, and propane) and stable isotope composition (methane and ethane) of hydrate-bound gas in sediments of Lake Baikal. Hydrate-bearing sediment cores were retrieved from eight gas seep sites, located in the southern and central Baikal basins. Empirical classification of the methane stable isotopes (δ13C and δD) for all the seep sites indicated the dominant microbial origin of methane via methyl-type fermentation; however, a mixture of thermogenic and microbial gases resulted in relatively high methane δ13C signatures at two sites where ethane δ13C indicated a typical thermogenic origin. At one of the sites in the southern Baikal basin, we found gas hydrates of enclathrated microbial ethane in which 13C and deuterium were both highly depleted (mean δ13C and δD of –61.6‰ V-PDB and –285.4‰ V-SMOW, respectively). To the best of our knowledge, this is the first report of C2 δ13C–δD classification for hydrate-bound gas in either freshwater or marine environments.  相似文献   
2.
A wind-driven, general circulation for a two-layer ocean with continental shelf-slope along the western boundary is studied numerically. Special attention is focused on the formation process of the western boundary current in the subtropical gyre. The western boundary current develops in the upper layer along the western boundary on the shelf-slope with a bottom trapped poleward flow in the lower layer. The poleward undercurrent is concentrated approximately along the contour lines of the potential vorticity,f/D, wheref is the Coriolis parameter andD the depth of the ocean. The separation of upper- and lower-layer flows on the shelf-slope represents a typical transient response. As the response approaches a steady state, the poleward undercurrent decreases in amplitude, and the motion tends to be confined to the upper layer. The flow pattern becomes similar to that found in a flat bottom ocean. A steady-state response is expected to be isostatic (no motion in the lower layer), even on the shelf-slope, as conservation of potential vorticity would suggest.The remarkable increase in transport of the western boundary current produced by the formation of an anticyclonic vortex on the shelf-slope extending throughout the hemisphere (Holland, 1973) does not occur in the wind-driven general circulation.  相似文献   
3.
In recognition that similarity in the density balance leads to resemblance in circulation between the two-dimensional non-rotating and three-dimensional rotating systems which have similar density stratification, we investigate convection induced by cooling at one side wall and heating at the sea surface by using a two-dimensional non-rotating model as idealized representation for the deep Pacific circulation. In the model, various vertical profiles are taken for the side wall cooling, which are assumed to correspond to the density structure of the Anatarctic Circumpolar Current. In a small diffusivity range, two important features are found to be robust against change in the vertical profile of the side wall cooling. One is that the density stratification is horizontally almost uniform. The other is that the balance in the density equation between the vertical advection and the vertical diffusion holds in the interior. Consequently, the vertical density balance, together with the equation of continuity, determines the circulation pattern for the prescribed vertical profile of the side wall cooling. The multi-layered meridional flow, which is expected to exist in the deep Pacific, is shown to form for certain vertical profiles of the side wall cooling.  相似文献   
4.
Response of the tropical ocean to a uniform zonal wind is studied numerically and analytically. In addition to the Equatorial Undercurrent and surface westward flows on both sides of the equator, an eastward flow at the pycnocline depth is formed at several degrees latitude in both hemispheres. This subsurface eastward flow first appears in the eastern part of the ocean and extends to the west. Then it gradually decreases in speed, and at a steady state the speed is of the order of 1cm sec–1. The spatial distribution of this subsurface flow is similar to the Subsurface Countercurrent, but the speed is one order smaller than that observed. The obtained thermostad is obscure compared with that observed. Whole of the time evolution produced by a numerical model can be accounted for by linear wave dynamics in a multi-layer model including vertical diffusion and friction. Although diffusion and friction are essential to maintain this subsurface flow, changes in the values of coefficients for vertical viscosity and diffusivity and also in initial density stratification lead only to a minor change in the speed of the subsurface eastward flow. It is concluded that a subsurface eastward flow with speed exceeding 10 cm sec–1 accompanied by a distinctive thermostad structure cannot be explained by linear wave dynamics including vertical dissipation.  相似文献   
5.
Methane in the East China Sea water   总被引:1,自引:0,他引:1  
Methane in the East China Sea water was determined four times at a fixed vertical section along PN line consisting of 11–14 stations, in February 1993, October 1993, June 1994 and August 1994. The mean concentration of methane in the surface water was not significantly higher than that in the open ocean. The methane concentration below the pycnocline increased during the stratified period in summer to autumn and reached to 15 nmoles/l at most in October. The concentration of methane was fairly well correlated with AOU in the layer below the pycnocline in the stratified season. This means that methane in the bottom water has only a single source, which is expected to be anoxic sediments near the coast, and that the oxidation rate of methane in the water is extremely slow in the oxic water. The high methane observed in October completely disappeared in February, indicating that the methane was escaped to the atmosphere or transported to the pelagic ocean by the Kuroshio current. The East China Sea, therefore, is not a large direct and stationary source for the atmospheric methane, but may have some role as a source by supplying it sporadically to the atmosphere in early winter or indirectly from the surface of the pelagic ocean.  相似文献   
6.
The concentration of methane in seawater was determined approximately once a month for one year from August 1990 to July 1991 at a station close to the center of Funka bay (92 m depth) and some supplementary observations were also carried out. The concentration of methane was usually increased with increasing depth, suggesting that methane was emitted from the bottom of the bay. While highly variable both spatially and temporally, the emission was intense in March and April, a period immediately after the spring bloom of phytoplankton. The maximum of methane found in the intermediate water suggests its source from the slope of the bay. The concentration of methane in the surface water changed seasonally and also interannually. The annually averaged flux of methane transferred to the atmosphere in the bay was estimated to be 6×10–3 gCH4m2/day. The coastal zone in the world may be a significant source of the atmospheric methane, although its source strength has yet to be accurately estimated from more data in different coastal seas.  相似文献   
7.
Abstract— Noble gases in two ureilites, Kenna and Allan Hills (ALH) 78019, were measured with two extraction methods: mechanical crushing in a vacuum and heating. Large amounts of noble gases were released by crushing, up to 26.5% of 132Xe from ALH 78019 relative to the bulk concentration. Isotopic ratios of the crush‐released Ne of ALH 78019 resemble those of the trapped Ne components determined for some ureilites or terrestrial atmosphere, while the crush‐released He and Ne from Kenna are mostly cosmogenic. The crush‐released Xe of ALH 78019 and Kenna is similar in isotopic composition to Q gas, which indicates that the crush‐released noble gases are indigenous and not caused by contamination from terrestrial atmosphere. In contrast to the similarities in isotopic composition with the bulk samples, light elements in the crush‐released noble gases are depleted relative to Xe and distinct from those of each bulk sample. This depletion is prominent especially in the 20Ne/132Xe ratio of ALH 78019 and the 36Ar/132Xe ratio of Kenna. The values of measured 3He/21Ne for the gases released by crushing are significantly higher than those for heating‐released gases. This suggests that host phases of the crush‐released gases might be carbonaceous because cosmogenic Ne is produced mainly from elements with a mass number larger than Ne. Based on our optical microscopic observation, tabular‐foliated graphite is the major carbon mineral in ALH 78019, while Kenna contains abundant polycrystalline graphite aggregates and diamonds along with minor foliated graphite. There are many inclusions at the edge and within the interior of olivine grains that are reduced by carbonaceous material. Gaps can be seen at the boundary between carbonaceous material and silicates. Considering these petrologic and noble gas features, we infer that possible host phases of crush‐released noble gases are graphite, inclusions in reduction rims, and gaps between carbonaceous materials and silicates. The elemental ratios of noble gases released by crushing can be explained by fractionation, assuming that the starting noble gas composition is the same as that of amorphous carbon in ALH 78019. The crush‐released noble gases are the minor part of trapped noble gases in ureilites but could be an important clue to the thermal history of the ureilite parent body. Further investigation is needed to identify the host phases of the crush‐released noble gases.  相似文献   
8.
9.
For Probabilistic Tsunami Hazard Analysis (PTHA), we propose a logic-tree approach to construct tsunami hazard curves (relationship between tsunami height and probability of exceedance) and present some examples for Japan for the purpose of quantitative assessments of tsunami risk for important coastal facilities. A hazard curve is obtained by integration over the aleatory uncertainties, and numerous hazard curves are obtained for different branches of logic-tree representing epistemic uncertainty. A PTHA consists of a tsunami source model and coastal tsunami height estimation. We developed the logic-tree models for local tsunami sources around Japan and for distant tsunami sources along the South American subduction zones. Logic-trees were made for tsunami source zones, size and frequency of tsunamigenic earthquakes, fault models, and standard error of estimated tsunami heights. Numerical simulation rather than empirical relation was used for estimating the median tsunami heights. Weights of discrete branches that represent alternative hypotheses and interpretations were determined by the questionnaire survey for tsunami and earthquake experts, whereas those representing the error of estimated value were determined on the basis of historical data. Examples of tsunami hazard curves were illustrated for the coastal sites, and uncertainty in the tsunami hazard was displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves.  相似文献   
10.
Abstract. Magnetotelluric (MT) surveys were carried out around the Muine volcano, Hokkaido, Japan, where it is expected that the heat and metal source forming the polymetallic Ag-Pb-Zn-Cu-In Toyoha deposit is present at depth. Measurements were performed at 20 sites, 18 of which were located along a WSW-ENE profile traversing the north ridge of Mt. Muine. A resistivity model obtained from 2D inversion of the MT data shows subsurface specific conductive and resistive features. Conductive layers are present at the surface of Mt. Muine. The low resistivity is probably due to the clay-rich rocks associated with the hydrothermal alteration. A high resistivity layer, which corresponds to the pre-Tertiary Usubetsu Formation, crops out east of Mt. Muine and dips westward. At the west foot of Mt. Muine, relatively high resistive layers are widely exposed. The resistivity increases with depth and exceeds 1000 ohm-m. This fact indicates that this region is not influenced by the recent hydrothermal activity. An extremely conductive zone about 3–6 km wide and 6–9 km thick exists at a depth of 2 km below Mt. Muine. This zone mostly corresponds to an elastic wave attenuation zone detected by a seismic survey. It is interpreted as a large hydrothermal reservoir or melted magma, which is a heat source of the hydrothermal system in this area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号