首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   116篇
  国内免费   224篇
测绘学   8篇
大气科学   395篇
地球物理   24篇
地质学   12篇
海洋学   2篇
综合类   2篇
自然地理   21篇
  2024年   2篇
  2023年   9篇
  2022年   19篇
  2021年   24篇
  2020年   24篇
  2019年   39篇
  2018年   34篇
  2017年   18篇
  2016年   16篇
  2015年   26篇
  2014年   36篇
  2013年   29篇
  2012年   26篇
  2011年   25篇
  2010年   25篇
  2009年   23篇
  2008年   11篇
  2007年   33篇
  2006年   16篇
  2005年   9篇
  2004年   9篇
  2003年   2篇
  2002年   3篇
  2001年   5篇
  2000年   1篇
排序方式: 共有464条查询结果,搜索用时 46 毫秒
21.
该文介绍了一种自动识别和移除雷达反射率因子资料中亮带的算法, 并对该算法进行了初步测试。该算法利用的是插值到直角坐标系中的雷达反射率因子资料, 其配置和运行也相对简单, 但却对移除亮带比较有效。首先, 设定一套雷达反射率因子垂直廓线的理想模板, 这些理想的模板能够在最大程度上反映不同亮带存在区域的雷达实际反射率因子的垂直廓线特征。然后, 在水平方向每个点上, 进行理想模板和实际反射率因子垂直廓线在垂直和水平两个方向上的拟合和差异计算, 来自动识别雷达反射率因子中存在的连续亮带区域。最后, 利用亮带之上和亮带之下的反射率因子值对亮带中的反射率因子值进行插值纠正, 就可以移除亮带。利用位于天津塘沽的我国新一代天气雷达 (CINRAD/SA) 的反射率因子资料, 通过个例分析和准业务运行试验, 均表明这个简单算法可以识别和移除绝大多数影响雷达定量降水估计的反射率因子亮带区域, 但是实际雷暴区域的反射率因子特征受到该算法的影响比较小。计算分析还表明, 在京津地区的初夏, 上述亮带区域一般容易出现在2.5 km左右的高度处。  相似文献   
22.
利用新一代天气雷达回波资料和一个雷暴单体识别、追踪和分析算法, 对2004年7月10日下午造成北京局地短时强降水的雷暴特征进行了初步分析。在偏南暖湿气流中生成的对流云团, 在北京上空迅速发展, 逐渐形成了一个覆盖城区的β-中尺度对流超级复合体, 导致了这次强降水过程。详细分析表明, 强对流主要是来自城区西南和东南两个方向生成和发展起来的雷暴。在北京西南部的雷暴逐渐向东北的城近郊区移动和发展, 并与新生成的雷暴合并加强, 造成了石景山、门头沟和海淀部分地区的大雨。在北京东南部逐渐形成的两个小雷暴单体迅速增长并向西北方的城区移动, 在到达城区时合并且迅速加强, 但移速缓慢, 在北京城区维持了两个多小时, 造成了城区的大暴雨过程, 降水量大但空间分布不均匀。雷暴顶高度和最大反射率因子的关系呈反位相变化, 雷暴最大反射率因子出现的高度均位于0 ℃等温线之下 (≥0 ℃) 或其附近, 雷暴的中心和反射率因子权重质心也基本位于0 ℃等温线之下, 均证实了这是一个典型的液态强降水对流系统。分析还表明, 20:00 (北京时) 左右的超强雷达回波是由大气异常传播造成的虚假超折射回波。  相似文献   
23.
对北京地区1994~2005年暖季(5~9月)雷暴、冰雹、暴雨和大风等各种对流天气进行了气候统计和分析。统计结果表明:北京地区暖季发生对流的概率很高,按日数统计的气候概率达47.77%,有雷暴相伴的强对流天气大风、暴雨和冰雹气候概率分别为27.29%、10.84%和6.29%。另外,北京地区对流天气一般可连续出现3 d,强对流天气也可连续出现2 d。北京地区对流季节长达4个月,其中6、7、8月为主要的对流月,这三个月中雷暴发生的气候概率均超过50%。暴雨多发季节为7月中旬到8月上旬。冰雹集中于6月中、下旬。在对流天气的地理分布上,北京西北部、东北部山区及西南部山区多对流天气,中心区和东南部平原地区对流天气较少。暴雨呈西南-东北方向带状分布,东北部山区、中部和东南部平原地区多发生暴雨,而西北部和西南部山区很少发生暴雨。山区冰雹明显多于平原。西北部和东北部山区大风偏多,西南部霞云岭大风最少。暴雨有明显的夜发性,即夜间次数多,降水量更大。冰雹集中发生在午后到傍晚,占冰雹总站次的76.72%。夜间发生冰雹的概率非常小,上午到中午也不多。  相似文献   
24.
北京精细下垫面信息引入对暴雨模拟的影响   总被引:11,自引:1,他引:11       下载免费PDF全文
首先根据2000年环北京实际的精细下垫面布局资料(500m分辨率),按美国USGS陆面资料分类标准(25类)对其提供的全球30 s经纬分辨率(≈1 km)下垫面分类资料进行了更新设计.进而针对一个北京夏季暴雨过程,利用10:3.3km双向双重嵌套的MM5V3.6-Noah LSM陆气耦合模式进行24h数值对比试验,研究了北京精细下垫面信息引入对暴雨的影响.分析表明:新设计的陆面资料更真实地反映了环北京区域的下垫面结构,尤其针对北京城区面积迅增特征;同时还修正了原资料将亚洲中纬度区域落叶阔叶林下垫面类型归属为热带(或亚热带)稀疏大草原类型的问题.其在数值天气模式中的引入会对短期暴雨过程的发生发展产生重要影响.对此次暴雨主要降水中心的模拟,12h差值分布范围远达30km以上,中心值相对差异可达30%.研究发现在城市下垫面和大气相互间存在一个重要的相互影响机制,即由于城区面积的扩大会导致自然植被减少,进而会减少地表蒸发及相应局地大气水分供应、加深边界层高度并增强大气水汽混合,这不利于降水的发生发展.  相似文献   
25.
气象灾害事件的数学形态学特征及空间表现   总被引:2,自引:1,他引:2       下载免费PDF全文
几何面特征是气象灾害的主要空间形态表现, 气象要素值的同化结果、下垫面地表类型、人口和财产的聚集特征组合在灾害特征面上的分布情况呈现显著空间差异及分布不均衡。利用空间分析和数学形态学方法, 依据城市地区复杂下垫面所表现的地表土地覆盖类型, 生成数字化动态卷积模板, 对建立在气象要素分布图上的图谱化网格进行动态膨胀和腐蚀操作, 计算结果可图形化表示为气象灾害在城市空间面上的影响图谱, 并以此作为气象灾害在城市地区造成影响的空间评估结果。针对北京1999年7月22日的高温灾害性天气的个例研究结果表明, 靠近或包含“水体”和“绿地”的空间网格区域大多被执行了腐蚀操作, 而建筑用地、道路、水泥地面等分布较集中区域的空间网格, 则被执行了膨胀操作。因此, 采用数学形态学的“面状灾害事件”空间形态特征的演算对表现灾害自然强度及评估多致灾因子下灾害的真实影响情况是非常有效的。  相似文献   
26.
加密自动站资料质量保障体系分析   总被引:11,自引:1,他引:11  
陶士伟  徐枝芳 《气象》2007,33(2):34-41
加密自动站(IAws)观测网随着我国观测系统的加强日趋完善,许多省市都有IAWS局域网。IAWS观测资料的应用也日益受到重视。但由于IAWS观测资料的特殊性,其质量问题不同程度地阻碍了它的使用。为了促进我国IAWS观测资料质量保障体系的建立,首先通过对比IAWS观测资料和以往的天气尺度常规地面人工站(CMWS)观测资料的特点,分析了IAWS资料的特殊性,然后从国际上IAWS观测资料质量保障体系的经验和方法着手,对IAWS观测资料和CMwS观测资料质量保障体系的差别以及建立IAWS观测资料质量保障体系应注意的重点和问题进行了分析。分析结果表明:IAWS观测资料质量保障体系不同于CMWS观测资料质量保障体系,应特别重视观测业务管理体制建立和台站级自动质量控制、人工干预、监测评估等技术的应用。  相似文献   
27.
城市小区规划对大气环境影响的评估研究   总被引:5,自引:3,他引:5  
不同城市小区规划方案对大气环境的影响不同。本文在已建城市小区尺度气象和污染扩散模式的基础上,针对城市小区规划对气象及大气环境的影响,提出了一套以人为本的客观、科学、可操作的影响评估指标及方法,并以北京市某小区两种规划方案为例,具体评估了它们对气象及大气环境的不同影响。结果表明:由于第二种规划方案在小区中部有一条较宽的东西向道路,并且道路中绿化较多,这条道路是气流东西向流动的重要通道,道路附近风速较大、气温较低、污染较轻,并且对整个小区的气象和大气环境都有改善。由此可见,基于城市小区尺度模式,对城市小区规划对大气环境的影响进行评估是必要和可行的。本文提出的人体舒适度、行人舒适度、地面污染物浓度、最高建筑高度以下污染物浓度、建筑物表面污染物浓度及扩散能力等六项评估指标,并分别给予该6种指标的权重系数为0.2,0.1,0.1,0.1,0.1及0.4,然后再加权平均的评估方法是合理可行的。  相似文献   
28.
利用低光度相机首次观测到了2013年7月31日华北地区一次中尺度对流系统(MCS)上空产生的中高层Sprite放电现象。结合闪电定位、天气雷达等同步观测, 对一次MCS诱发的Sprite的形态学特征及其对应的母体闪电和雷暴系统的雷达回波特征等进行了详细分析。研究除发现了2例圆柱型、3例胡萝卜型和1例舞蹈型 Sprite外, 还发现了2例发光主体发育不完全的Y字型Sprite。估算的Sprite的底部平均高度低于61.8±3.5 km, 顶部平均高度为84.3±6.8 km。Sprite持续时间算术平均值为25.7±9.8 ms, 几何平均值为24.4 ms。Sprite的母体闪电均为正地闪, 峰值电流在+62.5~+106.2 kA之间, 算术平均值为+77.1±22.2 kA, 是本次MCS所有正地闪平均峰值电流的1.4倍。Sprite母体闪电的脉冲电荷矩变化(iCMC)在+475~+922 C km之间, 几何平均值为+571.0 C km。Sprite母体闪电发生在MCS雷达回波25~35 dBZ的层状云降水区, 弱回波(<30 dBZ)面积的突然增加对Sprite的产生有重要指示作用。Sprite易发生在MCS成熟—消散阶段正地闪比例(POP)显著增加的时段。在本次MCS消散阶段中, 有两个时间段可能有利于产生Sprite。在Sprite集中发生时间段, 北京闪电综合探测网(BLNET)探测到的正地闪比例为54.2%, 正地闪连续电流比例70.24%, 连续电流持续时间为58.17±50.31 ms, 有利于Sprite的产生。  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号