首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   36篇
  国内免费   43篇
地球物理   24篇
地质学   65篇
综合类   3篇
自然地理   1篇
  2019年   1篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   12篇
  2011年   10篇
  2010年   21篇
  2009年   18篇
  2008年   3篇
  2007年   2篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2001年   3篇
排序方式: 共有93条查询结果,搜索用时 19 毫秒
41.
地球表面的温度信号向地下传播并影响地下温度剖面,这种温度剖面可从钻孔中测量,通过分析可重建过去表面温度变化.虽然认识到表面温度变化对地下温度和热流的影响已有很长时间,但仅在20世纪80年代以后钻孔温度剖面才被广泛应用于气候变化研究.钻孔气候方法与其他重建过去气候的近似方法不同,因为它是基于温度剖面测量与过去气候,即地表温度(GST)、重构参数的直接物理联系之上的.钻孔温度气候研究方法已被证实可以重建过去地表温度趋势,并且最终可结合表面气温序列估计其预观测平均值(POMs).钻孔温度剖面并不是地表温度的代用指标,而是地球大陆表面能量平衡的直接测量.这种地下的信号通过热扩散衰减非常快,因而对从地下温度测量数据中提取过去气候变化信息的方法施加了一个物理限制.描述由钻孔中测量的温度—深度剖面来重建GST历史的基本特征及问题.  相似文献   
42.
由于ENVISAT/AATSR资料不同角度热辐射亮度值之间存在较高的相关性从而导致较大误差的产生,本文尝试避开这种误差源,只选取天底观测数据对黄土高原陇东地区整层大气水汽含量及地表温度进行反演.与MODIS整层大气水汽含量产品对比验证表明,本文结果与MODIS产品有一定差异,但是可以直接用于大气透过率的估算.结合野外观测数据对地表温度反演结果的检验表明,最大绝对误差为4.0 ℃,平均相对误差为5.0%,因此,该算法在黄土高原陇东地区应用比较成功.  相似文献   
43.
本文针对模式发展的需要, 在Farouki土壤热传导率参数化方案的基础上, 综合Johansen和Côté的参数化方案, 发展了一个用于青藏高原中部的土壤热传导率参数化方案, 用“全球协调加强观测计划之亚澳季风青藏高原试验计划(CAMP/Tibet)”中那曲布交(BJ)站实际资料对该方案进行了检验, 并将它用于公共陆面模式(CoLM)中, 对青藏高原那曲地区进行了单点数值模拟试验. 结果表明: 在未冻结及冻结土壤中, 新方案比Farouki方案计算的土壤热传导率小, 更接近实测值. 加入新方案的CoLM模式对土壤温度模拟的准确性比原模式有一定的提高.  相似文献   
44.
汶川M_S8.0地震前DEMETER卫星探测的离子温度变化分析   总被引:1,自引:0,他引:1       下载免费PDF全文
2008年5月12日汶川MS8.0地震的发生给我国带来巨大的人民生命财产和经济损失, 这次沉痛的事件再次表明, 地震的预测预报是非常困难的. 同时, 地震的预测预报又具有非常重大的意义. 地震后, 研究人员在研究总结反思现有观测手段(钱复业等, 2009; 余涛等, 2009)的同时, 也开展了近些年国外发展起来的空间观测研究(曾中超等, 2009; 何宇飞等, 2009). 对空间观测手段, 在已公开发表的研究成果中, 大多利用的是2004年法国发射的DEMETER(Detection of Electro-Magnetic Emissions Transmitted from Earthquake Regions)地震电磁卫星所探测的电磁场信号进行分析研究, 而对卫星所探测到的电离层离子温度则没有较为详细的讨论. 例如, 曾中超等(2009)对DEMETER地震电磁卫星探测到的电离层电子的温度、 密度以及电场和磁场进行了分析研究, 得到了可能与汶川地震有关的疑似异常; 何宇飞等(2009)利用DEMETER卫星对中国周边多个导航VLF发射站信号的研究, 得到了震中上空区域不同频率对应的信噪比在地震前后发生明显变化的结果.  相似文献   
45.
海拉尔CTBTO地震台阵下方小尺度非均匀体研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用国际禁核组织在海拉尔布设的小孔径地震台阵的16个深远地震波资料,分离出了P波波场中不相干的尾波.频率域中对波场扰动的研究表明,在0.5~3.0 Hz的频率范围内,观测到的波场扰动可以利用P波在随机介质中的散射进行解释.不同远震事件得到的稳定结果表明,在该台阵下方34 km厚的地壳和110 km厚的岩石层中可能存在相关长度为2.0~7.4 km的散射体.  相似文献   
46.
兰州地区晚第三纪磁性地层与古环境意义   总被引:1,自引:0,他引:1       下载免费PDF全文
兰州地区位于黄土高原和青藏高原的过渡带,其第三纪地层对研究风尘沉积发育和青藏高原隆升都有着特殊的意义.本研究以0.5 m间距对兰州盆地皋兰山剖面240 m的晚第三纪地层进行古地磁样品采集,古地磁样品共计422个;以50 ℃为间隔从室温至500 ℃用热退磁仪和超导磁力仪完成了皋兰山剖面样品的系统热退磁和剩磁测量.结果表明皋兰山剖面上部地层的实测极性柱出现2个负极性大段中间夹着4个正极性小段,其特点与Gilbert时的典型特征完全一致,并且两端未完全出露的正极性分别与Chron2A.3n和Chron3An.1n相对应,最终确定皋兰山剖面的年代为6~3.5 Ma.由此推断,皋兰山剖面顶部的五泉砾岩形成大约开始于3.5 Ma,五泉砾岩底界年代的确定,为青藏高原的A幕运动提供了地质证据.皋兰山剖面深度602 m处出现由河湖相砂岩向以风成红粘土为主常夹有薄层砂岩的地层转变,通过岩性地层及年代的推断,兰州地区的风尘序列堆积发育的年代至少为7 Ma,与黄土高原风尘序列堆积底界8~7 Ma基本一致,说明了兰州地区与黄土高原在风尘序列堆积过程中具有统一性.  相似文献   
47.
自然科学基金资助下的我国冰冻圈科学发展   总被引:1,自引:0,他引:1  
冷疏影  丁永建 《地球科学进展》2010,25(10):1091-1100
冰冻圈是指地球表层水以固态形式存在的圈层,包括冰川、冻土、积雪、海冰、河冰、湖冰等.作为一门新兴学科,冰冻圈科学研究其各组成部分的形成机理、演化规律、与其他圈层之间的相互作用,以及对经济社会的影响.在全球变暖背景下,冰冻圈研究受到前所未有的重视,成为气候系统研究中最活跃的领域之一,也是当前全球变化和可持续发展最关注的热点之一.中国是中低纬度地区冰冻圈最发育的国家,中国冰冻圈变化的气候效应、环境效应、水资源效应和生态效应非常显著,因此,对国家西部发展战略有重大意义.我国冰冻圈科学的发展与国家自然科学基金项目的支持息息相关,许多前瞻性、先导性、基础性的项目源自于基金项目的支持.国家自然科学基金在引领冰冻圈研究新领域和人才培养两方面起到了奠基和推动作用.着重回顾了在自然科学基金资助下我国冰冻圈科学的发展历程.  相似文献   
48.
遥感结合地面观测估算陆地生态系统蒸散发研究综述   总被引:2,自引:1,他引:1  
地面观测和遥感模拟作为陆地生态系统蒸散发研究的2种基本手段,有着各自的优缺点且存在互补性。因此,有效地将遥感和地面观测站点资料相结合,探讨陆地生态系统蒸散发的时空分布规律及不同尺度转换理论与方法,实现蒸散耗水地面观测结果的尺度扩展和生态需水量估算成为普遍关注的焦点。从遥感与地面观测结合确定陆地生态系统蒸散发入手,论述目...  相似文献   
49.
垂直电场观测试验及数据初步分析   总被引:1,自引:1,他引:0       下载免费PDF全文
地震发生前的电磁异常现象已被地面、卫星等多种观测手段观测到.目前,我国已经建成了100多个水平地电场观测台站,然而对于垂直电场的观测仍是一个空白.自2009年4月开始,在甘肃天祝地震前兆科学台阵的红沙湾、黄羊川、松山建立了3个垂直电场观测试验站,进行垂直地电场的试验观测,在我国专门的垂直地电场观测试验研究尚属首次.通过近1年的观测试验,取得了有价值的观测资料.从数据的初步结果来看,垂直电场的日变化形态清晰,黄羊川和松山观测数据的日变幅度在16 mV/km左右,红沙湾观测数据的日变幅度在8 mV/km左右;垂直电场日变化周期的主要成分是24小时的全日波,其次是12小时周期的半日波.   相似文献   
50.
具有生物活性的元素Fe被认为限制了海洋生物生产力,其在海洋生态系统中的生物地球化学循环对全球碳循环起到调节作用,全球40%~50%的海洋因“高叶绿素低营养盐”(HNLC)“缺Fe”而初级生产力较低.然而,关于生物活性元素Fe的研究不仅涉及海洋科学,还与大气科学、环境科学、地球科学等学科紧密联系.近些年,围绕生物活性元素“Fe”开展的研究不仅是地球科学领域的前沿问题,还是海洋学家与环境学家共同关注的热点问题.目前,尽管对于生物活性元素Fe的研究已取得很大的进展,但模型、室内实验及野外观测之间仍存在很大的挑战与不确定性.系统地总结了生物活性元素Fe最重要的自然来源方式,详细介绍了影响生物活性元素Fe溶解度的主要因素,最后,对将来的工作提出建议,为我国未来开展类似的研究提供参考.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号