首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   27篇
  国内免费   33篇
大气科学   89篇
地球物理   4篇
地质学   6篇
海洋学   2篇
综合类   1篇
自然地理   10篇
  2023年   4篇
  2022年   4篇
  2021年   8篇
  2019年   4篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   8篇
  2013年   9篇
  2012年   4篇
  2011年   11篇
  2010年   6篇
  2009年   8篇
  2008年   2篇
  2007年   11篇
  2006年   8篇
  2005年   4篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1988年   1篇
  1983年   1篇
排序方式: 共有112条查询结果,搜索用时 31 毫秒
81.
对我国年、季大气干旱指数的气候跃变分析   总被引:9,自引:0,他引:9  
江剑民  刘荣 《气象学报》1993,51(2):237-240
近来,严中伟等利用COADS及我国的观测资料,分析指出了北半球夏季自北非、印度、我国中部至日本一带,在60年代出现了降水突发性减少的气候跃变。作者曾分析过近30多年来我国的年度大气干旱指数及其年际变化,指出我国大陆长江以北的变化趋势,与Sahel地区、英格兰中部及威尔士  相似文献   
82.
在抗旱、防雹、生态环境保护和重大活动气象保障等国家和地方重大需求的推动下,2008—2018年我国人工影响天气技术和应用得到快速发展。在气溶胶粒子、云(雾)物理垂直结构和降水形成机理等方面,开展了大量科学试验研究,取得了重要成果,建立了国家级人工影响天气实时业务数值预报模式,提高了对作业云特征和演变过程的预报能力,对作业方案的科学设计具有重要作用。在机载云粒子谱仪与成像仪、多通道微波辐射计、X波段偏振雷达、雨(雾)滴谱仪、先进火箭作业系统等核心关键技术装备的国产化研发方面也取得重要进展,研制成功国产机载云粒子测量系统、地基多通道微波辐射计和立体播撒火箭作业系统,并应用于业务,提高了作业条件监测识别和地基作业能力。建立了空中国王、新舟60等型号的先进飞机探测和作业平台,大幅度提高了作业飞行高度、续航时间和空中作业能力。在电离、飞秒激光、声波等人工增雨新技术领域开展了理论和实验探索研究,在飞秒激光诱导降雪机理实验和数值模拟等方面取得了重要进展。  相似文献   
83.
孙颖姝  周玉淑  王咏青 《大气科学》2019,43(5):1041-1054
本文利用欧洲中心ERA-Interim和NOAA的再分析资料并应用拉格朗日后向轨迹追踪的方法对2015年5月24日发生在南疆的一次强降水过程进行了动力诊断和水汽特征分析。结果表明此次强降水过程的直接影响系统是中亚低涡前西南气流中发展的小槽,南北两支高空急流辐散场叠加引发的对流层高层加剧的抽吸作用和高低空急流的耦合作用共同导致了深厚强烈的上升运动,是这次强降水主要的动力抬升机制。TBB(black body temperature)的演变与降水的发生、发展有很好的对应关系,TBB中心降至-50°C以下时降水开始且随其中心强度的扩大降水也持续加强。进一步诊断发现,低层850 hPa对流涡度矢量(CVV)垂直分量的正值中心在降水前6~12小时已可以大致体现未来强降水的落区。此次南疆盆地强降水的水汽主要源于黑海和里海,低空急流引导了一部分水汽进入南疆,HYSPLIT模式后向追踪的结果表明,此次强降水过程主要有两条水汽通道,均源于新疆以西的欧亚大陆但输送路径有所差异,偏西路径和转向路径分别主要输送800 hPa以上和以下的水汽,降水发生前两条路径在垂直方向上均有明显抬升,水汽辐合有利于暴雨的形成。  相似文献   
84.
2008年夏季北冰洋海冰表面积雪特征初步分析   总被引:1,自引:0,他引:1  
运用中国第三次北极考察期间观测的积雪资料, 分析了夏季北冰洋中心海域海冰表面积雪的空间分布特征. 结果表明: 积雪在垂直分布上呈现6种粒雪状态, 表层到底层依次为新降雪、风板、冰片、深霜、冻结状粗雪和渗浸冻结冰层, 积雪表面常被新降雪或厚度为2~3 cm的风板所覆盖. 考察区域积雪的平均密度为(304.01±29.00)kg·m-3, 表层密度略低于次表层, 遵循雪的密实化原理. 积雪厚度, 雪水当量和新降雪皆具有由南向北递减的空间分布特征, 表明在海冰消融末期, 积雪的气候态分布主要是由降水量的多少决定的, 积雪的消融和蒸发并非海冰表面积雪评估需考虑的首要因素. 雪温随深度的增加而增加, 具有明显的垂直梯度, 观测区积雪表面的平均温度为(-2.01~±0.96)℃, 比海冰/积雪界面的温度高得多.  相似文献   
85.
气候变化对地表水资源的影响   总被引:7,自引:0,他引:7  
总结了气候变化对水文水资源影响方面的研究方法, 分析了气候变化条件下水文水资源变化的研究现状和存在问题.并以山西省和黄河源区为研究对象, 以分布式水文模型为工具、GCMs输出的气候情景为输入条件, 针对不同的下垫面特征建立不同的分布式水文模型, 分别采用气候情景趋势分析结果和直接利用GCMs输出结果两类方法确定气候变化的数据源, 对研究区域未来的地表径流过程和地表水资源可能的变化趋势进行了研究.从气候情景的预测结果来看, 未来50年山西省的气温和降水都呈增加趋势, 但由于各自对水资源带来的影响不同, 将使山西省水资源呈现先增加后减少的趋势; 且由于冬季气温和降水的增幅比夏季大, 使得未来山西省的水资源年内分布有略微平缓的趋势.对黄河源区而言, 虽然未来100年内的降水和气温都呈增加趋势, 但由于降水增长引起的地表水资源的增加不足以抵消气温升高带来的影响, 因此将导致径流量不断降低的总体趋势, 并使径流年内分布略趋平缓, 而年际分布将越来越不均匀, 旱涝威胁日趋严峻.   相似文献   
86.
利用山西省2008—2010年64架次云结构的飞机探测资料,结合地面观测和卫星数据统计分析了层状云系的宏微观特征。结果表明:降水云和非降水云系的微物理特征量,两者存在显著的差异,层状云要达到降水,云的厚度要达到近2000m;粒子尺度分布云粒子有效半径要达到10~14μm,降水性层状云低云含水量垂直方向上平均为0.03g/m3,中云含水量垂直方向上平均为0.05g/m3,;避光高层云-层积云、雨层云降水过冷水的最大值出现在距0℃层高度以上500m附近,其最大值分别为0.61,0.42g/m3;透光高层云降水过冷水的最大值出现在距0℃层高度以上300m附近,其值为0.28g/m3;云中水分按不同粒子尺度的分配可以看出,直径20、30μm的粒子含水量较高,对云中液态水含量的贡献较大,降水粒子主要由20、30μm的粒子转化;降水性层状云在垂直方向上的微物理结构特征非常明显,也是分层的。高层主要是冰相粒子,是冰雪晶,随高度降低冰雪晶的尺度增大,在4个典型温度层的观测中,液态含水量、云粒子及降水的浓度、尺度相较有很大不同。  相似文献   
87.
基础气象资料检索系统是山西省气象局2011年青年基金课题《基础气象资料检索系统》的具体实现,根据科研工作对气象资料的需求,基于B/S构架,系统利用动态网页技术和数据库技术,发挥气象部门局域网优势,使得用户可以通过WEB浏览器访问系统,以实现相关气象资料的查询。  相似文献   
88.
基于卫星遥感的植被NDVI对气候变化响应的研究进展   总被引:10,自引:1,他引:9  
回顾了以往植被对气候响应的有关研究,从此类研究常使用的数据、方法及获取的结论3个方面进行了分析,重点阐述了归一化植被指数(Normalized Difference Vegetation Index,NDVI)对降水、温度和辐射等气候因子的响应特征,并探讨了未来的发展趋势。结果表明,植被NDVI对降水的显著响应往往出现在干旱半干旱地区和干湿季气候差异明显地区,且具有一定的滞后特征,滞后的时间尺度与局地条件关系密切;温度成为植被NDVI 控制因子的情况常出现在温带或寒温带地区,与对降水的滞后响应相比,植被对于温度的滞后响应并不是特别明显;辐射对于植被的主导影响主要出现在低纬度的部分区域、高云量区域和高纬度地区的特定时间段内。认为量化人类在植被对气候变化响应过程中的作用,全球变暖情形下植被对气候响应特征的深入分析,以及植被受气候影响的多尺度特征可能是以后此类研究的发展方向。  相似文献   
89.
吴昊  袁媛 《陕西气象》2010,(4):21-23
本文通过对太原市2007年-2009年酸雨观测资料进行分析,讨论了太原市酸雨的年变化规律,分析了太原市酸雨与降水量、风速、风向等气象要素的关系,指出太原市近三年的酸雨频率较高,酸雨强度较强,酸雨已经成为太原市的环境问题.  相似文献   
90.
山西省自动气象站资料显示系统采用WEBGIS、SVG、AJAX等技术,建立了基于B/S模式的业务应用系统,解决了高时空密度自动气象观测站的数据显示问题,提供了一种方便、及时、直观的自动站资料应用手段,为更好地开展天气预报和气象服务业务提供了基础。本文介绍了系统的构成、功能划分、使用说明和采用的关键技术。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号