首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   38篇
  国内免费   47篇
测绘学   14篇
大气科学   4篇
地球物理   7篇
地质学   163篇
海洋学   2篇
天文学   1篇
综合类   5篇
自然地理   6篇
  2024年   1篇
  2023年   7篇
  2022年   19篇
  2021年   20篇
  2020年   13篇
  2019年   12篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   7篇
  2014年   25篇
  2013年   9篇
  2012年   11篇
  2011年   9篇
  2010年   16篇
  2009年   13篇
  2008年   5篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1957年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
121.
利用全球卫星导航系统反射信号技术(GNSS-R)反演海面风速时,得到的双基雷达横截面积由于几何因素的影响不能直接用来反演风速.针对这一问题,对功率校准后的数据进行几何校正,在分析全球卫星导航系统(GNSS)海面反射信号特征的基础上,分析了几何因素对风速反演的影响,对双基雷达横截面积和有效散射区域进行校正,得到相应反射点的反射信号功率;最后对所求得的反射信号参数进行仿真验证.实验结果表明,海面风速反演的均方根误差为2.61 m/s,反演风速与真实风速的相关系数为0.57,校正后的归一化双基雷达横截面积能够有效地反演海面风速.  相似文献   
122.
寨上金矿是武警黄金部队继阳山超大型金矿之后,在西秦岭地区发现的又一特大型金矿。通过研究区域地质背景、矿床地质特征,分析主要控矿条件,总结成矿规律,研究矿床成因,建立了该矿床的成矿模式,即盆地热水沉积为成矿打下良好的基础,大气降水和岩浆热水的混合形成的成矿流体在断裂构造内迁移形成,在断裂破碎带内由于温度、压力以及氧、二氧化碳逸度的变化,成矿物质沉淀富集成矿。  相似文献   
123.
阿尕泽铜金矿位于青海省共和盆地的最南缘,大地构造位置处于秦岭一昆仑东西构造北亚带边缘及北北西向(河西系)构造带交接部位。成矿带属于鄂拉山成矿体系。矿区属于高寒草甸区,采用土壤样测量反映测区被覆盖的地质信息。通过土壤地球化学测量圈出的元素异常及形态,确定成矿主元素Au、As、Sb的浓集中心,根据金矿前缘指示元素As、Sb的形态建立找矿靶区AⅠ、AⅡ、AⅢ、AⅣ,确定铜金矿的成矿类型为构造热液蚀变型金矿。对总结鄂拉山地区金矿成矿规律具有指导意义。  相似文献   
124.
Granitic leucosome and pegmatite are widely distributed within biotite-bearing orthogneiss in the northern part of the Sulu ultrahigh-pressure (UHP) metamorphic terrane, eastern China. A combined study of mineral inclusions, cathodoluminescence (CL) images, U–Pb SHRIMP dates, and in situ trace element and Lu–Hf isotope analyses of zircons provided insight into the nature and timing of partial melting in these rocks. Zircon grains separated from biotite-bearing orthogneiss typically have three distinct domains: (1) pre-metamorphic (magmatic) cores with Qtz + Kfs + Pl + Ap inclusions, which record a Neoproterozoic protolith age of ~ 790 Ma, (2) mantles with Coe + Phe + Ap inclusions that record Triassic UHP age at 227 ± 3 Ma, and (3) narrow rims with quartz inclusions that record HP granulite-facies retrograde metamorphism at ~ 210 ± 3 Ma. In contrast, zircons separated from granitic leucosome have only two distinct domains: (1) the central UHP areas with Coe + Phe + Ap inclusions record Triassic UHP age of 227 ± 3 Ma, and (2) outer magmatic areas with Qtz + Kfs + Ab + Ap inclusions that record partial melting time of 212 ± 2 Ma. Zircons separated from pegmatite contain mineral inclusions of Qtz + Kfs + Ap and show regular magmatic zoning from centre to edge. The centres record partial melting time of 212 ± 2 Ma in line with the outer domains of granitic leucosome, whereas the edges give a younger age of 201 ± 2 Ma related to Pb loss and partial recrystallization during late Triassic regional amphibolite-facies retrogression. These data indicate that partial melting in the north Sulu UHP gneissic rocks took place during post-UHP, retrograde HP granulite-facies metamorphism.Pre-metamorphic (magmatic) zircon cores from biotite-bearing orthogneiss give uniform 176Hf/177Hf of 0.28187 ± 0.00003 (2 SD; standard deviation) corresponding to εHf(790) and Hf model ages (TDM2) of about ? 16.3 and 2.41 Ga, respectively. This is consistent with the generation of its protolith by reworking of Paleoproterozoic to late Archean crust. In contrast, UHP zircon domains from biotite-bearing orthogneiss and granitic leucosome are characterized by distinct trace element composition with low Lu/Hf (< 0.006), low Th/U (< 0.1) and considerably higher, 176Hf/177Hf (0.28233 ± 0.00002; 2 SD) than the pre-metamorphic cores. The uniform but significantly different Hf isotope composition between the UHP (εHf(227) = ? 14.6 ± 0.8; 2 SD) and pre-metamorphic (εHf(227) = ? 27.7) domains indicates equilibration of the Lu–Hf isotope system only within the UHP metamorphic mineral assemblage. The disequilibrium between whole rock and UHP zircon suggests that about two thirds of the whole rock Hf retained in the pre-metamorphic zircon domains. Zircon domains crystallized during partial melting at 212 Ma in granitic leucosome and pegmatites have a Hf isotope composition indistinguishable from that of the UHP zircon domains. This suggests that only Hf (and Zr) equilibrated during UHP metamorphism was remobilized during partial melting while pre-metamorphic zircon remained stable or was not accessible. In contrast, the magmatic zircon edges from pegmatite have somewhat lower 176Hf/177Hf (~ 0.28216) and εHf(t) (? 17.6 ± 1.2; 2 SD) indicating some release of less radiogenic Hf for instance by dissolution of pre-metamorphic zircon during late regional amphibolite-facies retrogression.  相似文献   
125.
通过对新疆东准噶尔卡拉麦里地区贝勒库都克岩体的岩石地球化学特征的研究,结果表明,在贝勒库都克黑云母花岗岩中Rb、K和Th等大离子亲石元素明显富集,相对富集Zr、Hf等高场强元素,相对亏损Ba、Sr、Nb和Eu等元素,稀土元素含量相对较高,Eu的负异常极强,稀土元素配分模式呈平坦的“V”字型,属于典型的铝质A型花岗岩。该花岗岩在成因上属于A2型,形成于后碰撞的张性环境,其来源可能与洋壳和岛弧建造组成的年轻地壳有关。花岗岩微量元素构造判别图显示它是一种后碰撞花岗岩,标志卡拉麦里地区在晚石炭世造山作用的结束和板内构造演化的开始。该岩体锡质量分数普遍都比较高(15.50×10^-6),为锡的成矿物质来源和锡矿矿床学的深人探索提供重要参考。  相似文献   
126.
陕西省勉县白云寺铅锌矿床地质特征   总被引:2,自引:0,他引:2  
勉县白云寺铅锌矿床位于秦岭复合造山带勉略古岛弧隆起带之勉略蛇绿构造混杂岩带东段,由2条铅锌矿体组成,矿体呈规则脉状赋存于层内韧脆性断裂中,含矿地层为泥盆-石炭系金家河岩组。矿床类型为变质热液型。  相似文献   
127.
扬子地块北缘观音庵铅锌矿找矿模型及远景预测   总被引:1,自引:0,他引:1  
西乡观音庵铅锌矿位于扬子地块北缘汉南—碑坝基底隆起的东南缘,属马元铅锌矿带南岸山—松坪铅锌矿东矿段沿倾向自然东延部分。区内地层产状总体东倾,倾角平缓,一般5°~15°,局部受断层或次级穹窿构造影响,具波状起伏特征,震旦系灯影组多处形成"似构造窗"。在观音庵沟一带圈定了4条铅锌矿体。铅锌矿体赋存层位为上震旦统灯影组上段第二岩性层,赋矿岩石均为厚层角砾状白云岩,具有层控、岩控的特点;矿体一般呈层状、似层状,顺层或微斜切层理产出,具有膨大狭缩、分枝复合、分段集中等特点。铅锌矿体长300~1440 m,厚度1.18~1.70 m,铅品位1.18%~2.20%,锌品位1.03%~2.32%。研究认为区内铅锌矿成因类型类似于密西西比河谷型(MVT型)铅锌矿,但也有着一定的差异,可称为"台缘型"或"扬子型"铅锌矿。通过控矿条件分析及找矿模型建立,认为区内深部找矿应沿基底隆起周边向外深部灯影组角砾状白云岩层位,在扬子地块北缘∈1/Z2平行不整合面下10~50 m范围内的破碎角砾状白云岩带;重点区段是角砾岩带延伸方向及灯影组隐伏区。从而预测本区深部找矿前景较大。  相似文献   
128.
苏海图组火山岩发育自然铜矿化,具有从拉斑玄武岩系列向钙碱性玄武岩系列过渡的特点。依据地球化学特征,表明其TiO2含量较低(1%),玄武岩高的Al2O3含量、低的稀土含量,并且稀土元素曲线具有平缓型到轻稀土低度富集的特点。微量元素原始地幔标准化图解上,它们均富集大离子亲石因素(LILE),亏损高场强元素(HFSE),具有强的Nb和Ta的负异常,Ti的低负异常,以及P和Sm的低正异常。Zr/Nb值和Sm/Nd值接近MORB的范围,Th/Nb值大于0.11,Nb/Zr值小于0.04。以上这些特征均显示出典型岛弧岩浆的特点。所以,苏海图组火山岩为火山弧火山岩,其构造背景为大陆岛弧,源区可能为被流体或沉积物交待改造的亏损地幔。  相似文献   
129.
The construction of a comprehensive observation platform for natural-resource elements would provide data support for studies of dynamic changes in various natural resources, and could serve the needs of natural-resource management and the construction of ecological civilization during a period of global change. As the second-largest inland river basin in NW China, the Heihe River Basin (HRB) lies in the central part of the Silk Road Economic Belt, consequently, pilot studies of resource management in the basin are urgently needed. This paper describes the construction of a comprehensive natural-resource elements observation network in the HRB to meet requirements for natural-resource management, based on natural-resource and Earth-system science. Based on current observations and research, thirteen observation stations were established in different river basins through integration with existing stations, reconstruction and upgrading, and new construction. The main types of land-surface resources in the HRB (grassland, forests, rivers, lakes, deserts, wetlands, and farmland) were included in the observation network constructed for the monitoring of natural-resource elements. Long-term, continuous, and stable observation can yield key data concerning coupling processes, trends of change, and rates of change in natural resources. This is of great significance in improving cognitive ability, scientific management, and strategic decision-making regarding natural resources in the HRB, and can provide a reference paradigm for the observation of and research into natural resources in other basins.  相似文献   
130.
建成环境对城市不同年龄群体活力的时空异质性影响研究   总被引:1,自引:0,他引:1  
城市活力是城市空间质量的重要体现,对构建可持续发展的城市空间具有重要参考意义。该文以西宁市主城区为例,利用手机信令数据探索城市不同年龄群体活力的空间分布模式,采用多元线性逐步回归模型和多尺度地理加权回归(MGWR)模型定量研究建成环境对城市不同年龄群体活力的时空异质性影响。研究发现:1)根据不同年龄群体活动能力和需求的差异可将活力空间分布模式划分为“离核紧凑型”“离核延伸型”“聚核延伸型”“聚核紧凑型”4种群体活力分布模式。2)建成环境对群体活力影响的群体差异和时空异质性显著。区位条件普遍影响各群体活力且具有稳健的时间变化特征;道路交叉口密度有利于青年和老年群体活力的提升,且白天影响力高于夜晚;公交线路数量仅与老年群体白天活力呈正相关关系;白天时段建筑密度对少年和老年群体活力的积极影响高于夜晚;容积率对青年群体夜晚活力和老年群体白天活力的影响完全相反;相比功能混合度,具体配套设施密度对各群体活力影响更突出。研究结果可为城市精准设计和差异化设施布局提供借鉴,促进城市空间协调发展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号