首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   910篇
  免费   268篇
  国内免费   256篇
测绘学   22篇
大气科学   2篇
地球物理   122篇
地质学   1108篇
海洋学   131篇
天文学   16篇
综合类   18篇
自然地理   15篇
  2024年   10篇
  2023年   20篇
  2022年   64篇
  2021年   74篇
  2020年   60篇
  2019年   112篇
  2018年   63篇
  2017年   143篇
  2016年   144篇
  2015年   79篇
  2014年   109篇
  2013年   101篇
  2012年   122篇
  2011年   71篇
  2010年   39篇
  2009年   49篇
  2008年   27篇
  2007年   29篇
  2006年   20篇
  2005年   12篇
  2004年   13篇
  2003年   8篇
  2002年   10篇
  2001年   10篇
  2000年   11篇
  1999年   21篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1988年   4篇
  1982年   1篇
  1954年   1篇
排序方式: 共有1434条查询结果,搜索用时 156 毫秒
991.
北京市区小区域地震影响   总被引:2,自引:0,他引:2       下载免费PDF全文
文中研究了北京及其周围地区的历史地震和地震地质资料,并在此基础上估计了基岩运动的参数。众所周知,局部地质、地形和土质条件等许多因素对给定场地的地面运动特性都是有影响的。本文着重考虑了土层的特性对地面运动的影响.作为分析工作的基础,我们研究了北京地区典型土层的动力特性。为了分析市区各场地上的地震反应,我们将它分成面积大体相等的许多网格,对于每一网格都分析了相应土层柱状在指定输入运动下的地震反应,通过电子计算和绘图装置将结果用许多图件表示,从而给出了不同场地上地震反应谱和强震地面运动的地区分布。这些图件可用来作为制定土地利用和防震规划的参考。我们根据市区每一地点的计算反应谱和典型结构的平均周期确定了相应结构的地震系数,结果已绘成等值线,这些图件可作为典型结构的震害预测和抗震设计的参考。   相似文献   
992.
Liquid sloshing in storage tank is a fundamental problem of great engineering importance. Sloshing motion can be laminar or turbulent. However, the necessity for inclusion of turbulence in CFD simulation of sloshing flows has not yet been established. In this paper, three roll–induced sloshing cases are studied to assess the merits and shortcomings of the laminar model and three most–commonly used turbulence models (RANS k–ε, LES and Very LES). To overcome the deficiencies in the RANS and LES, the new Very LES (VLES) model, which combines the RANS k–ε and LES, is developed in this paper. The free surface profiles are reconstructed by a coupled Level–Set and Volume–of–Fluid (CLSVOF) method. To the authors’ knowledge, the comprehensive and systematical assessment of the effect of turbulence on sloshing simulation has not been reported in the literature. The numerical results are evaluated using experimental measurements from Delorme and Souto−Iglesias. The present study indicates that the inclusion of an appropriate turbulence model has a profound influence on the simulations of violent and non–violent sloshing flows. The VLES and LES models can provide accurate predictions of free surface profiles and impact pressures, whereas the laminar flow assumption and the RANS model cannot adequately capture the energy dissipation in the sloshing simulation and lead to the inaccurate flow predictions.  相似文献   
993.
The compositions, distribution and its interaction with rocks of the evolving pore fluids controls the distribution of carbonate cements and reservoir storage spaces. The reservoir quality of the red-bed sandstone reservoirs in the Dongying Depression was investigated by an integrated and systematic analysis including carbonate cement petrology, mineralogy, carbon and oxygen isotope ratios and fluid inclusions. The investigation was also facilitated by probing the mineral origins, precipitation mechanisms, pore fluid evolution and distribution, and water-rock interaction of carbonate cements and their influences on reservoir quality. Diagenetic-evolving fluids in the interbedded mudstones are the main source for the precipitation of calcite cements that completely fill the intergranular volume (CFIV calcite) with heavier oxygen and carbon isotopes. The ferro-carbonate cements in the reservoir sandstone are enriched in lighter carbon and oxygen isotopes. In addition to the cations released by the conversion of clay minerals in reservoirs, products of organic acid decarboxylation and the associated feldspar dissolution process provide important sources for such carbonate cementation. The carbon isotopes of CO2 and the oxygen isotopic composition of fluids equilibrated with the CFIV calcite, ferro-calcite, dolomite and ankerite cements indicate that the pore in the red-bed reservoirs experienced high salinity fluids, which evolved from the early-formed interbedded mudstones, through organic acid input and to organic acid decarboxylation. Pore fluids from nearby mudstones migrated from the edge to the centre of sandbodies, causing strong calcite cementation along the sandbody boundaries and forming tight cementation zones. Pore fluids associated with organic CO2 and acids and organic acid decarboxylation are mainly distributed in the internal portion of sandbodies, causing feldspar dissolution and precipitation of ferro-carbonate cements. The distribution of pore fluids caused the zonal distribution of carbonate cements in sandbodies during different periods. This may be advantageous to preserve the porosity of reservoirs as exemplified by the distribution of high-quality reservoirs in the red-bed sandbodies.  相似文献   
994.
Sequence stratigraphy and syndepositional structural slope-break zones define the architecture of the Paleogene syn-rift, lacustrine succession in eastern China's Bohai Bay Basin. Jiyang, Huanghua and Liaohe subbasins are of particular interest and were our primary research objectives. Interpretation of 3D seismic data, well logs and cores reveals: One first-order sequence, 4 second-order sequences, and ten to thirteen third-order sequences were identified on the basis of the tectonic evolution, lithologic assemblage and unconformities in the subbasins of Bohai Bay Basin. Three types of syndepositional paleo-structure styles are recognized in this basin. They are identified as fault controlled, slope-break zone; flexure controlled, slope-break zone; and gentle slope.The three active structural styles affect the sequence stratigraphy. Distinct third-order sequences, within second-order sequences, have variable systems tract architecture due to structuring effects during tectonic episodes. Second-order sequences 1 and 2 were formed during rifting episodes 1 and 2. The development of the third-order sequences within these 2 second-order sequences was controlled by the active NW and NE oriented fault controlled, slope-break zones. Second-order sequence 3 formed during rifting episode 3, the most intense extensional faulting of the basin. Two types of distinctive lacustrine depositional sequence were formed during rifting episode 3: one was developed in an active fault controlled, slope-break zone, the other in an active flexure controlled, slope-break zone. Second-order sequence 4 was formed during the fourth episode of rifting. Syndepositional, fault- and flexure-controlled slope-break zones developed in the subsidence center (shore to offshore areas) of the basin and controlled the architecture of third-order sequences in a way similar to that in second-order sequence 3. Sequences in the gentle slope and syndepositional, flexure controlled slope-break zones were developed in subaerial region.Distribution of lowstand sandbodies was controlled primarily by active structuring on the slope-break zones, and these sandbodies were deposited downdip of the slope-break zones. Sand bodies within lowstand systems tracts have good reservoir quality, and are usually sealed by the shale sediments of the subsequent transgressive systems tract. They are favorable plays for stratigraphic trap exploration.  相似文献   
995.
Pore-throat size is a very crucial factor controlling the reservoir quality and oiliness of tight sandstones, which primarily affects rock-properties such as permeability and drainage capillary pressure. However, the wide range of size makes it difficult to understand their distribution characteristics as well as the specific controls on reservoir quality and oiliness. In order to better understand about pore-throat size distribution, petrographic, scanning electron microscopy (SEM), pressure-controlled mercury injection (PMI), rate-controlled mercury injection (RMI), quantitative grain fluorescence (QGF) and environmental scanning electron microscopy (ESEM) investigations under laboratory pressure conditions were performed on a suite of tight reservoir from the fourth member of the Lower Cretaceous Quantou Formation (K1q4) in the southern Songliao Basin, China. The sandstones in this study showed different types of pore structures: intergranular pores, dissolution pores, pores within clay aggregates and even some pores related to micro fractures. The pore-throat sizes vary from nano- to micro-scale. The PMI technique views the pore-throat size ranging from 0.001 μm to 63 μm and revealed that the pore-throats with radius larger than 1.0 μm are rare and the pore-throat size distribution curves show evident fluctuations. RMI measurements indicated that the pore size distribution characteristics of the samples with different porosity and permeability values look similar. The throat size and pore throat radius ratio distribution curves had however significant differences. The overall pore-throat size distribution of the K1q4 tight sandstones was obtained with the combination of the PMI and RMI methods. The permeability is mainly contributed by a small part of larger pore-throats (less than 30%) and the ratio of the smaller pore-throats in the samples increases with decreasing permeability. Although smaller pore-throats have negligible contribution on reservoir flow potential, they are very significant for the reservoir storage capacity. The pore-throats with average radius larger than 1.0 μm mainly exist in reservoirs with permeability higher than 0.1mD. When the permeability is lower than 0.1mD, the sandstones are mainly dominated by pore-throats with average radius from 0.1 μm to 1.0 μm. The ratio of different sized pore-throats controls the permeability of the tight sandstone reservoirs in different ways. We suggest that splitting or organizing key parameters defining permeability systematically into different classes or functions can enhance the ability of formulating predictive models about permeability in tight sandstone reservoirs. The PMI combined with QGF analyses indicate that oil emplacement mainly occurred in the pore-throats with radius larger than about 0.25–0.3 μm. This result is supported by the remnant oil micro-occurrence evidence observed by SEM and ESEM.  相似文献   
996.
The Hongshi gold deposit is located in the southwestern margin of the Kanggur–Huangshan ductile shear zone in Eastern Tianshan, Northwest China. The gold ore bodies are predominantly hosted in the volcanogenic metasedimentary rocks of the Lower Carboniferous Gandun Formation and the Carboniferous syenogranite and alkali-feldspar granite. The syenogranite and the alkali-feldspar granite yield SHRIMP zircon U–Pb ages of 337.6 ± 4.5 Ma (2σ, MSWD = 1.3) and 334.0 ± 3.7 Ma (2σ, MSWD = 1.1), respectively, indicating that the Hongshi gold deposit is younger than 334 Ma. The granitoids belong to shoshonitic series and are relatively enriched in large ion lithophile elements (Rb, K, Ba, and Pb) and depleted in high field-strength elements (Nb, Ta, P, and Ti). Moreover, these granitoids have high SiO2, Al2O3, and K2O contents, low Na2O, MgO, and TiO2 contents, low Nb/Ta ratios, and slightly positive Eu anomalies. The εHf(t) values of the zircons from a syenogranite sample vary from + 1.5 to + 8.8 with an average of + 5.6; the εHf(t) values of the zircons from an alkali-feldspar granite sample vary from + 5.0 and + 10.1 with an average of + 7.9. The δ34S values of 10 sulfide samples ranged from − 11.5‰ to + 4.2‰, with peaks in the range of + 1‰ to + 4‰. The above-mentioned data suggest that the Hongshi granitoids were derived from the melting of juvenile lower crust mixed with mantle components formed by the southward subduction of the paleo-Tianshan ocean plate beneath the Aqishan–Yamansu island arc during the Early Carboniferous. The Hongshi gold deposit was formed by post-collisional tectonism during the Permian. The granitoids most likely acted as impermeable barriers that prevented the leakage and runoff of ore-bearing fluids. Thus, the granitoids probably played an important role in controlling gold mineralization.  相似文献   
997.
The Anle Zn–Pb deposit, hosted by Upper Cambrian dolostone, is located in the southern Songpan–Ganzi Block in southwest China. In this deposit, ore bodies occur as stratiform lenses and consist of galena, sphalerite and pyrite as ore minerals, and quartz, dolomite and calcite as gangue minerals. The mineralization shows mainly vein, banded and brecciated structures. Four ore bodies have been found in the Anle deposit, with a combined 2.0 million tonnes (Mt) of sulfide ores at average grades of 1.64 wt.% Pb, 6.64 wt.% Zn and 45 g/t Ag. Brown, brownish-yellow and yellow sphalerite samples have δ66Zn values ranging from + 0.08 to + 0.10‰ (average + 0.09‰, n = 3), + 0.12 to + 0.38‰ (average + 0.24‰, n = 8) and + 0.40 to + 0.50‰ (average + 0.46‰, n = 3), respectively. We interpret the progressively heavier Zn isotopes from brown to yellow sphalerite as being led by kinetic Raleigh fractional crystallization. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 4.8 to − 0.2‰ (average − 1.7‰, n = 7) and + 17.9 to + 21.4‰ (average + 19.6‰, n = 7), respectively. Whole-rock δ13CPDB and δ18OSMOW values of the Cambrian ore-hosting dolostone range from + 0.1 to + 1.1‰ (average + 0.6‰, n = 3) and + 23.2 to + 24.1‰ (average + 23.6‰, n = 3), respectively. This suggests that carbon in the ore-forming fluids was provided by the host dolostone through carbonate dissolution. δ34SCDT values of sulfide samples range between − 1.3‰ and + 17.8‰ with an average value of + 6.3‰ (n = 25), lower than evaporites (such as barite + 19.8‰) in the overlaying Lower Ordovician sedimentary strata. The data suggest that sulfur in the hydrothermal fluids were derived from evaporites by thermo-chemical sulfate reduction (TSR). 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios for sulfide minerals range from 17.63 to 17.86, 15.58 to 15.69 and 37.62 to 37.95, respectively. The data are similar to those of the age-corrected Cambrian ore-hosting dolostone (206Pb/204Pb = 17.70–17.98, 207Pb/204Pb = 15.58–15.65 and 208Pb/204Pb = 37.67–38.06), but lower than those of age-corrected Ordovician sandstone and slate (206Pb/204Pb = 18.54–19.58, 207Pb/204Pb = 15.73–15.81 and 208Pb/204Pb = 38.44–39.60). This indicates that ore Pb was most likely to be derived from the Cambrian ore-hosting dolostone. Therefore, our new geological and isotopic evidence suggests that the Anle Zn–Pb deposit is best classified to be an epigenetic carbonate-hosted Mississippi Valley-type (MVT) deposit.  相似文献   
998.
The Jiama deposit, located in the eastern part of the well-known Gangdese Metallogenic Belt on the Tibetan Plateau, is the largest porphyry Cu–polymetallic system in the region, with the largest exploration budget, and is economically viable in the Gangdese Belt to undergo large-scale development. The deposit is well preserved and has experienced little erosion. The proven resources of the deposit are 7.4 Mt Cu, 0.6 Mt Mo, 1.8 Mt Pb + Zn, 6.65 Moz Au, and 360.32 Moz Ag. The results presented in this paper are based on geological and tectonic mapping, geological logging, and other exploration work performed by members of the Jiama Exploration Project Team over a period of 6 years. We propose that the Jiama porphyry Cu–polymetallic system is composed of skarn Cu–polymetallic, hornfels Cu–Mo, porphyry Mo ± Cu, and distal Au mineralization. The development of skarn Cu–polymetallic orebodies at the Jiama deposit was controlled mainly by the contact zone between porphyries and marbles, an interlayer detachment zone, and the front zone of a gliding nappe structure. The hornfels Cu–Mo and porphyry Mo ± Cu orebodies were controlled mainly by a fracture system related to intrusions, and the distal Au mineralization resulted from late-stage hydrothermal alteration.On the basis of field geological logging, optical microscopy, and chemical analysis, we verify that the alteration zones in the Jiama deposit include potassic, phyllic, propylitic, and argillic alteration, with a local lithocap, as well as endoskarn and exoskarn zones. The endoskarn occurs mainly as epidote alteration in quartz diorite porphyry and granite porphyry, and is cut by massive andradite veins. The exoskarn includes garnet–pyroxene and wollastonite skarn, in which the mineralogy and mineral chemical compositions display an outward zonation with respect to the source porphyry. From the proximal skarn to the intermediate skarn to the distal skarn, the garnet/pyroxene ratio varies from > 20:1 to ~ 10:1 to ~ 5:1, the garnet color varies from red-brown to brown-green to green-yellow, and the average composition of garnet varies from Ad80.1Gr18.9(Sp + Py)1.0 to Ad76.3Gr23(Sp + Py)0.7 to Ad59.5Gr39.5(Sp + Py)1.0, respectively. The pyroxene is not as variable in composition as the garnet, and is primarily light green to white diopside with a maximum hedenbergite content of ~ 20% and an average composition of Di88.6Hd8.9Jo2.5. From the proximal skarn to the intermediate skarn to the distal skarn, the mineralization changes from Cu–Mo to Cu ± Mo to Pb–Zn ± Cu ± Au ores, respectively. The wollastonite skarn displays no zonation and hosts mainly bornite mineralization. The Cu and Mo mineralization is closely related to the potassic and phyllic zones in the porphyry–hornfels.Zircons from four mineralized porphyries yield U–Pb ages of 15.96 ± 0.5 Ma, 15.72 ± 0.14 Ma, 15.59 ± 0.09 Ma, and 15.48 ± 0.08 Ma. The Re–Os ages of molybdenite from the skarn, hornfels, and porphyry are 15.37 ± 0.15 Ma, 14.67 ± 0.37 Ma, and 14.66 ± 0.27 Ma, respectively. The present results are consistent with the findings of previous research on fluid inclusions, isotopes, and other such aspects. On the basis of the combined evidence, we propose a porphyry Cu–polymetallic system model for the Jiama deposit and suggest a regional exploration strategy that can be applied to prospecting for porphyry-skarn mineralization in the Lhasa area.  相似文献   
999.
The uncertainty in the recoverable tonnages and grades in a mineral deposit is a key factor in the decision-making process of a mining project. Currently, the most prevalent approach to model the uncertainty in the spatial distribution of mineral grades is to divide the deposit into domains based on geological interpretation and to predict the grades within each domain separately. This approach defines just one interpretation of the geological domain layout and does not offer any measure of the uncertainty in the position of the domain boundaries and in the mineral grades. This uncertainty can be evaluated by use of geostatistical simulation methods. The aim of this study is to evaluate how the simulation of rock type domains and grades affects the resources model of Sungun porphyry copper deposit, northwestern Iran. Specifically, three main rock type domains (porphyry, skarn and late-injected dykes) that control the copper grade distribution are simulated over the region of interest using the plurigaussian model. The copper grades are then simulated in cascade, generating one grade realization for each rock type realization. The simulated grades are finally compared to those obtained using traditional approaches against production data.  相似文献   
1000.
This study used regional geochemical survey data (1:200,000 scale) from the Manzouli area of China to assess mineral resources. Geochemical survey data was rasterized and a geochemical atlas was generated, with the image pixel size determined according to geochemical exploration sample point spacing. The Wunugetushan, Babayi, and Badaguan porphyry copper deposits were selected as model areas for the assessment of copper mineral resources. Three parameters were considered for the calculation of the mineral resources. An ore-bearing hydrothermal alteration coefficient was determined based on geological characteristics and geochemical characteristics of the model area, in order to determine alteration intensity; a denudation coefficient was calculated to determine denudation extent; and a mineralization intensity coefficient was calculated to determine the intensity of mineralization within each pixel. Resource estimation was conducted through regression analysis of model deposit resources and coefficients. The results can be used to determine prospecting target areas based on frequency classification and can be used to estimate the number of ore deposits. Results show that resource estimation using rasterized geochemical data provides high prediction precision and accurate positioning.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号