首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   460篇
  免费   212篇
  国内免费   231篇
测绘学   36篇
大气科学   25篇
地球物理   120篇
地质学   662篇
海洋学   38篇
天文学   4篇
综合类   9篇
自然地理   9篇
  2024年   6篇
  2023年   7篇
  2022年   32篇
  2021年   43篇
  2020年   48篇
  2019年   94篇
  2018年   40篇
  2017年   64篇
  2016年   41篇
  2015年   38篇
  2014年   98篇
  2013年   69篇
  2012年   35篇
  2011年   48篇
  2010年   42篇
  2009年   41篇
  2008年   23篇
  2007年   32篇
  2006年   29篇
  2005年   16篇
  2004年   4篇
  2003年   9篇
  2002年   6篇
  2001年   7篇
  2000年   2篇
  1999年   7篇
  1998年   6篇
  1997年   6篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1988年   2篇
  1987年   4篇
排序方式: 共有903条查询结果,搜索用时 437 毫秒
101.
南平—宁化构造带沿线出露着以万全岩群和楼前组、西溪组等为代表的一系列新元古代火山-沉积岩系。系统的岩石学、年代学和地球化学研究表明,福建明溪和江西瑞金地区的楼前组浅变质英安岩和晶屑凝灰岩分别形成于(729±4)Ma和(735±6.7)Ma(LA-ICP-MS锆石U-Pb法),SiO2含量变化在65.22%~74.54%,相对富Al2O3(11.05%~16.80%)富碱(Na2O+K2O=4.88%~10.19%)而贫CaO、MgO和FeOT,ANK值和A/CNK值分别为1.23~1.78和0.98~1.57,Nb/Ta=12.44~17.28,Nd/Th=2.07~3.51,Ti/Zr=6.08~10.37,Ti/Y=68.51~154.71,属过铝质S型火山岩;明显富集大离子亲石元素(Ba、Rb等)而亏损高场强元素(Nb、Ta、Ti、P等),Zr/Nb=16.65~24.07,Th/Ta=12.94~16.93,δEu呈现明显负异常(0.33~0.62),显示岛弧岩浆岩的地球化学特征。综合区域地质资料及前人研究结果提出,南平—宁化一线在713 Ma前为活动大陆边缘环境,洋壳俯冲引发的岩浆活动形成了沿南平—宁化—瑞金一线展布的陆缘弧中酸性火山岩带,暗示此时南、北武夷之间尚未拼合形成统一的武夷地块,因而华夏地块不存在统一的前南华纪结晶基底。  相似文献   
102.
东际金(银)矿床赋存于燕山晚期南园组火山岩中,是东南沿海地区一个隐爆角砾岩型贵金属矿床,已探明金资源量达12.5 t,银资源量135.9 t。通过开展主要金属硫化物黄铁矿电子探针和硫-铅同位素分析,讨论了成矿作用和成矿物质来源等问题。研究表明,东际金(银)矿床黄铁矿Co/Ni值3~94(平均值23)且Co含量为500×10-6~1070×10-6(均值799×10-6),Fe/(S+As)值0.827~0.871(均值0.860),Au/Ag值0.9~5.5(均值2.6),反映该矿床是与陆相火山作用有关的浅成中低温热液型矿床。黄铁矿δ34S在-6.6‰~-0.7‰,206Pb/204Pb为17.9801~18.4303,207Pb/204Pb为15.2689~15.9397,208Pb/204Pb为37.9052~38.7871,指示成矿物质主要来源于具有壳幔混源性质的花岗质岩浆,此外含矿热液也活化萃取了部分基底变质岩和火山岩围岩的金属元素。通过锆石U-Pb年代学研究和区域成矿资料对比,东际金(银)矿床成矿时代可被限定于早白垩世晚期。  相似文献   
103.
摘要: 南岭东段是我国稀土矿产资源集中分布区,枫树洞稀土矿是南岭东段风化壳淋积型矿床,通过对该矿床含矿花岗岩层中的包体进行锆石U-Pb年代学和地球化学研究,发现稀土矿层中存在2种辉长质包体:早侏罗世包体((188±2.8)Ma)和晚三叠世包体((227±3.7)Ma)。包体中锆石阴极发光图像(CL)和锆石 Th/U值普遍>0.4,指示为岩浆锆石,大多数锆石稀土元素分布在热液锆石与岩浆锆石过渡区,说明包体中的岩浆锆石遭受后期热液的强烈改造,晚三叠世包体改造最强烈。早侏罗世包体主要锆石Ti温度为694~1 279 ℃,平均值为816 ℃,大多数>800 ℃; 晚三叠世包体主要锆石Ti温度为687~925 ℃,平均值为671 ℃,大多数<750 ℃,包体可能来源于含水条件下发生的部分熔融。包体锆石年龄中存在多组年龄数据,暗示南岭东段晚三叠世—早侏罗世,该地区曾发生了多次岩浆活动,反映了古太平洋板块对华南板块的影响由弱到强的变化过程,在这种俯冲背景下的岩浆由陆壳部分熔融形成,幔源物质活动也呈现出由弱至强的趋势。  相似文献   
104.
采用磁化率、黏土矿物测试及粒度分析等手段,结合区域第四纪地质特征,从气候演变和岩相古地理等角度探讨了安徽池州地区下蜀组的沉积环境及成因。该区下蜀组磁化率曲线呈波峰、波谷旋回特征;黏土矿物以伊利石为主,个别层位以蒙脱石、高岭石、绿泥石为主;粒度以粉砂为主,个别层位以粉砂及中粗砂为主。下蜀组沉积期间存在多次寒冷干燥到温暖潮湿的气候转换,整体为寒冷干燥气候的风成沉积,受古地理位置影响,沿江局部地区夹温暖潮湿气候条件下的长江水系冲积沉积。  相似文献   
105.
勘查植物地球化学是通过分析植物器官来获取成矿元素信息的地球化学方法。我国学者在干旱荒漠区、森林沼泽区、半干旱和湿润半湿润中低山景观区开展了系统的勘查植物地球化学试验,厘定了一批适用于勘查植物地球化学调查的植物,为该方法的推广及应用奠定了良好基础。今后应进一步加强对勘查植物地球化学异常产生的机理、勘查植物地球化学数据库及指南建立、勘查植物地球化学异常遥感应用等方面的研究,更好地利用勘查植物地球化学方法服务矿产勘查工作。  相似文献   
106.
西赣县区牛角龙钨多金属矿床是根据中国地质调查局在赣南老区实施精准扶贫工作总体部署,由南京地质调查中心“南岭东段重要矿种成矿要素调查”项目组通过1:5万矿产地质调查、大比例尺填图、地表槽探揭露和深部钻探验证等技术手段发现的具有大型成矿远景的钨多金属矿床。最新研究成果显示,该矿床为石英细脉-网脉带型黑钨矿多金属矿床,地表已圈定南、北2个矿脉带,其中呈近SN向展布的北脉带(Ⅰ)是矿区的主矿脉,以石英细脉-网脉型黑钨多金属矿为主,宽10~30 m,南北延伸1 500 m以上,验证实施的ZK001钻孔和ZK002钻孔中分别发现含矿石英脉157条和249条,已圈定了4个钨矿体、2个银矿体和8个含矿细脉带。该矿床的发现不仅实现了赣南找矿空白区的新突破,为该区脱贫致富提供新的钨多金属矿资源基地,也为赣南及相邻地区钨多金属矿找矿勘查提供了理论依据和成功示范。  相似文献   
107.
在乔治王岛中部的阿德默勒尔蒂湾 ,凯勒半岛、于尔曼山嘴和埃内坎角是第三纪火山岩集中分布区。野外地质调查和同位素年代学研究表明 ,凯勒半岛发生了三期火山喷发 (三个火山喷发旋回 ) ,同时伴随着火山活动中心的不断北移 ;在第二期火山喷发之后 ,火口塌陷 ,形成破火山 ,之后在半岛北部又发生火山喷发 ,并向东迁移到于尔曼山嘴。因此凯勒半岛是一复活破火山 ,火山活动具有随时间迁移的特性。埃内坎角火山活动虽与上述两地区大致同时 ,但化学成分上不存在明显演化关系 ,应属另一相对独立的火山活动中心  相似文献   
108.
三峡截流以来长江洪季潮区界变动河段冲刷地貌   总被引:4,自引:0,他引:4  
潮区界河段河势演变对三峡工程的响应是长江经济带建设中的重要问题。然而受观测手段所限,对三峡截流以来潮区界变动范围及其地貌演变的客观认识亟待探讨。对大通站洪季水位资料进行频谱分析,初步判断了近期长江洪季潮区界位置;对比1998年和2013年水下地形资料,分析了三峡大坝截流以来该河段河槽的冲淤演变特征;利用多波束测深系统对冲刷明显河段的微地貌进行了高分辨率观测。结果显示:(1)1998-2013年潮区界变动河段河槽整体冲刷5 649.7万m3。其中,上段全面冲刷,太白、太阳两洲并岸,铜陵沙被冲开,主槽刷深达5.6 m;中段主泓摆动,天然洲南冲北淤,黑沙洲中水道淤死,南水道左岸最大冲深达8.9 m;下段近岸冲刷强烈,北岸最大冲深达15.4 m;(2)该河段近期处于剧烈的冲刷环境,左岸冲刷尤为显著;(3)冲刷深槽分布在顺直河段,深达5.4~12.6 m;冲刷坑分布在分汊河段平面形态突变处,最大冲深达28.1~30.5 m;水下侵蚀陡坡分布在近岸侵蚀严重的顺直河段,坡度为0.59~0.62。  相似文献   
109.
The Carboniferous and Permian sedimentary rocks (mainly the Shanxi and Taiyuan formations) in the Linxing region, eastern Ordos Basin, China, host a significant volume of unconventional gas resources (coalbed methane, shale gas and tight sandstone gas). Currently, the in-situ stress state is poorly understood but knowledge of this is extremely important for a range of applications, such as gas exploration and production, fracture stimulation and wellbore stability. The maximum horizontal stress (SHmax), minimum horizontal stress (Shmin) and vertical stress (Sv) magnitudes, and the SHmax orientation in the Linxing region were systematically analyzed for the first time in the present study, which can provide a reference for subsequent numerical simulation and hydraulic fracturing design. Based on borehole breakouts and drilling-induced tensile fractures interpreted from borehole imaging logs, the SHmax orientation rotates from ∼NEE-SWW-trending in the southern part to ∼ NWW-SEE-trending in the northern part of the Linxing region. Both conventional logs and extended leak-off tests were used for stress magnitude determination. The results revealed three types of in-situ stress fields (Sv > SHmax > Shmin, SHmax > Sv > Shmin and SHmax > Sv ≈ Shmin), and a dominant strike-slip stress regime (SHmax > Sv ≥ Shmin) was found for the entire well section in the target Shanxi Formation and Taiyuan Formation in the Linxing region. In addition, differential stress increased with depth in the Linxing region, which indicates that wellbore instability might be a potentially significant problem when drilling wells that are vertical or ∼ N-S-trending.  相似文献   
110.
South China Block (SCB) is the broad area including the Yangtze Craton in the northwest and Huanan Orogen in the southeast. It is an important epithermal metallogenic province in China, containing at least 1 high-sulfidation (HS) and 42 low-sulfidation (LS) Au-Ag ± Cu ± Pb-Zn ± Sb epithermal deposits. Porphyry-type mineralization was recognized in four of the LS deposits, and thus they were regarded as LS–P type. These 43 deposits are mainly located in: (1) the Lower Yangtze River Belt and (2) the Northeastern Jiangnan Orogenic Belt in the Yangtze Craton, (3) the Wuyi-Yunkai Orogenic Belt and (4) the Southeast Coastal Volcanic Belt in the Huanan Orogen. They are mostly located in Mesozoic volcanic basins, especially where the regional faults and their subsidiaries occurred. The host rocks include Jurassic–Cretaceous volcanic-sedimentary rocks, coeval or slightly older subvolcanic, granitoids and breccias, and metamorphic basement rocks. The alteration of the HS epithermal deposit (Zijinshan Cu-Au) zoned from silicic (vuggy quartz), through alunite, to dickite and phyllic alteration zones, from the ore veins outwards. The alteration of the LS deposits is zoned from adularia-chalcedony-bladed calcite (or quartz pseudomorphs after bladed calcite) in ore veins to distal illite-sericite-chlorite-kaolinite assemblages. For those LS–P systems, besides the dominated LS alteration assemblages, phyllic and potassium silicate alteration related to porphyry mineralization were identified. Acid leaching textures and vein, stockwork and breccia structures are common in HS deposit, while the LS epithermal deposits are characterized by open-space filling, crustifications, colloform banding and comb structures. The ore-forming fluids are low-temperature, low-salinity meteoric water-dominated in most epithermal deposits in SCB, with variable input of magmatic water. The ore components were derived from both the deep magma and host rocks, and transported upwards or laterally and precipitated in the fracture systems by fluid boiling, mixing and cooling. Most of the epithermal deposits are formed at depth of < 1.5 km and < 300 °C, with few exceptions containing porphyry-type mineralization, such as the Zhilingtou, Yinshan and Longtoushan deposits. Deep drilling is suggested in these deposits as more epithermal and/or porphyry mineralization could be expected. The mineral systems were formed in Early Yanshanian (180–130 Ma) and Late Yanshanian (120–90 Ma) periods. The Early Yanshanian epithermal ore systems are mainly located in a series of E–W-trending metallogenic belts to the west of the Lishui–Haifeng Fault, which were formed in a syn- or post-collision tectonic setting by the collision between the SCB and its surrounding plates. The Late Yanshanian epithermal deposits are mainly located in Southeast Coastal Volcanic Belt, genetically related to the westward subduction of the paleo-Pacific plate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号