首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1184篇
  免费   214篇
  国内免费   339篇
测绘学   373篇
大气科学   516篇
地球物理   56篇
地质学   270篇
海洋学   144篇
天文学   128篇
综合类   69篇
自然地理   181篇
  2024年   10篇
  2023年   44篇
  2022年   76篇
  2021年   94篇
  2020年   60篇
  2019年   63篇
  2018年   45篇
  2017年   51篇
  2016年   63篇
  2015年   66篇
  2014年   97篇
  2013年   67篇
  2012年   70篇
  2011年   77篇
  2010年   72篇
  2009年   95篇
  2008年   80篇
  2007年   68篇
  2006年   71篇
  2005年   55篇
  2004年   56篇
  2003年   55篇
  2002年   27篇
  2001年   36篇
  2000年   22篇
  1999年   36篇
  1998年   33篇
  1997年   21篇
  1996年   22篇
  1995年   28篇
  1994年   10篇
  1993年   19篇
  1992年   15篇
  1991年   14篇
  1990年   7篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1954年   1篇
排序方式: 共有1737条查询结果,搜索用时 302 毫秒
981.
分析了目前水稻遥感估产的技术现状,基于遥感数据的空间特性,提出了一种快速预测水稻单产的方法,估产试验表明该方法简单实用,具有推广意义.  相似文献   
982.
风云3号卫星微波湿度计的系统设计与研制   总被引:4,自引:0,他引:4  
微波湿度计(MWHS)是风云3号卫星的主要有效载荷之一,其频率为150GHz(双极化)和183.31GHz(三通道),采用垂直于飞行方向的交轨扫描方式,科学目标是探测大气湿度的垂直分布.本文简要介绍微波大气湿度探测的基本原理,阐述了微波湿度计的系统构成及工作原理;描述了微波湿度计的性能指标要求.测试结果表明,微波湿度计性能指标满足设计要求.  相似文献   
983.
以深圳市东部滨海地区为试验区,对2004年11月21日ASTER遥感数据进行辐射和几何精校正处理,实地建立分类样地;根据多边形样地矢量数据计算分析12类地物在ASTER各波段光谱反射图和分类叠合图,同时进行植被指数和短波红外5个波段主成分分析;结合GIS并利用ASTER光谱波段、第一主成分、植被指数、立体像对生成的地形因子建立土地利用分类决策树表;再根据决策树表对ASTER影像进行土地利用分类。经验证,分类结果总体精度达到85.1%。应用效果表明,利用ASTER数据进行土地现状资源调查具有很好的性价比,能够满足土地利用现状调查的准确度和精度。  相似文献   
984.
植被指数在“北京一号”数据耕地提取中的应用研究   总被引:1,自引:0,他引:1  
本文旨在研究探讨适合我国最新发射的高性能对地观测"北京一号"小卫星影像中耕地提取方法。通过分析"北京一号"小卫星数据的波段特征,以山东曲阜多光谱图像为试验数据,计算典型的6种植被指数,在Erdas中建立模型,进行了耕地提取试验,并以灰度图像融合数据人工判读的结果作为参考数据,进行了精度评定。将适合"北京一号"小卫星数据的最佳植被指数提取模型应用于整个山东省的耕地提取中,得到修正植被指数提取模型,从而在"北京一号"小卫星数据耕地提取应用领域做了有效尝试。  相似文献   
985.
986.
编辑选编     
《气象科学进展》2018,(5):125-126
叶物候悖论:为什么变暖在温暖的地方更为重要——Leaf phenology paradox:Why warming matters most where it is already warm.Remote Sensing of Environment,2018,Vol.209.气候和生态系统特性之间的交互作用控制着物候对气候变暖和干旱的响应,而目前对这些交互作用仍然知之甚少。为了确定这些交互作用的贡献,美国杜克大学的Seyednasrollah等使用空基遥感植被指数检测了美国东南部沿气候梯度和不同生态区的叶片生长情况。通过建立一种分层状态——空间贝叶斯模型,量化了气温、干旱程度和冠层热胁迫是如何对山区到沿海平原地区的叶片展开产生影响的。研究使用了2001—2012年美国东南部59个观测点的植被生长开始期的气候数据、日植被指数和冠层表面温度数据。研究结果证实了沿不同生态区生态系统特性与气候变量之间存在很强的交互作用。研究发现,在山区,春季叶片生长开始得更快,而沿海地区森林对年际温度异常的敏感性更大。尽管所有地区对气温变暖的敏感性都在下降,但研究发现了一种生态系统的相互作用:落叶林为主的森林比落叶林较少的森林对气候变暖的敏感性更低,这很可能是由于常绿物种在整个季节中叶片持续地存在。山地森林的生长开始期更容易受到日益加剧的干旱和水分不足的影响,而沿海地区则相对具有生态弹性。随着冠层热胁迫(定义为冠层与空气的温度差异)的增加,叶片在干旱年之后生长变得缓慢,在湿润年之后生长加速。  相似文献   
987.
植物吸收性光合有效辐射分量(FPAR)的遥感反演是生态环境领域的核心研究内容之一,但在复杂地形山区,其估算精度严重受到地形效应的影响(包括本影与落影)。本文利用能够消除地形阴影影响的阴影消除植被指数(SEVI)对山区遥感影像进行FPAR反演,并分别与基于不同影像预处理程度计算的归一化植被指数(NDVI)、比值型植被指数(RVI)反演的FPAR做对比分析,以评估复杂山区反演FPAR存在的地形效应。结果表明:在不做地形校正的情况下,基于NDVI与RVI反演FPAR会使得本影及落影区域的值远小于非阴影区域的值,它们的相对误差均大于70%;基于C校正后的NDVI与RVI反演FPAR可以较好地校正本影区域,相对误差降至约6.974%,但落影处的校正效果不明显,相对误差约为48.133 %;而基于SEVI反演FPAR无需DEM数据的支持,可以达到经FLAASH+C组合校正后NDVI与RVI反演FPAR相似的结果,且能改善落影区域的地形校正效果,相对误差降至约2.730%。  相似文献   
988.
2010年11月5日发射的风云三号B星 (FY-3B) 是我国第2代极轨气象卫星的第2颗星。其上装载的微波湿度计 (MWHS) 在183 GHz水汽吸收线设计了3个大气探测通道,在大气窗区150 GHz设置了双极化通道。该文主要对FY-3B微波湿度计系统进行介绍,分析其在轨5年的性能,对仪器在轨关键性能参数进行了长时间序列分析,结果表明:仪器各通道灵敏度均优于0.4 K,其中通道1,2,4,5的灵敏度优于0.3 K,定标精度稳定在0.3~0.55 K,未出现恶化现象, 同类型在轨载荷星下点处匹配数据交叉比对,相关系数优于96%。分析表明,该仪器在轨性能和数据质量均优于FY-3A微波湿度计。同时,利用微波湿度计实测数据,着重分析2015年6—7月若干台风的生成、演化、增强和消亡的整个过程,并对台风区域强降雨监测进行分析。  相似文献   
989.
李刚  张鹭 《气象科学》2016,36(1):10-19
本文使用1978—2013年美国大气海洋局NOAA研发的STAR V3.0版本的MSU/AMSUA逐月亮温格点数据,引入集合经验模式分解(EEMD)方法,研究了高空大气亮温的非线性变化趋势,尤其注重亮温气候趋势的时间演变特征,并与传统线性回归(CLR)方法做了对比研究。结果表明,在全球对流层增温、平流层降温的大背景下,基于EEMD的亮温非线性趋势演变特征表现为:近10 a对流层中、高层全球平均增暖趋势放缓,甚至出现轻微的降温趋势;北半球对流层增暖首先出现在北极,随后向低纬度方向延伸。北极对流层增暖向上影响高层大气,最高可以扩展到平流层低层。南半球对流层中低纬度地区受北半球大气影响也出现增温。另外,近10 a南极地区出现显著的独立增温现象。平流层变冷北半球最早从中纬度地区开始发生,变冷逐渐增强的同时向极地和低纬度两侧扩张。南极上空平流层大气早期也出现显著变冷,然而随着2000年以后南极大范围增暖,平流层变冷逐渐转移到中低纬地区。  相似文献   
990.
魏浩  胡明宝  艾未华 《气象科学》2016,36(5):667-673
大气折射率结构常数描述了大气湍流起伏的强弱,它表征了大气折射率随机不均匀性的剧烈程度。光波和无线电波在大气中传播时会受到大气湍流的影响而产生各种不良效应,如:光斑漂移、闪烁、相位起伏等。因此,对大气折射率结构常数的研究具有重要的意义。本文利用常规探空资料对微波波段大气折射率结构常数进行了仿真研究,结果表明:在低空,特别是大气边界层之内,大气折射率结构常数主要为湿度所贡献;在高空,大气折射率结构常数主要为温度所贡献。在微波波段,影响大气折射率结构常数最大的气象因子并不是温湿压的大小,而是它们梯度的大小,其中湿度梯度的大小对其影响最大,在实际的低空测量大气折射率结构常数时,主要考虑湿度梯度与温度梯度的影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号