首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   29篇
  国内免费   20篇
测绘学   107篇
大气科学   19篇
地球物理   21篇
地质学   16篇
海洋学   10篇
天文学   439篇
综合类   25篇
自然地理   4篇
  2024年   4篇
  2023年   8篇
  2022年   11篇
  2021年   13篇
  2020年   14篇
  2019年   10篇
  2018年   12篇
  2017年   14篇
  2016年   10篇
  2015年   12篇
  2014年   18篇
  2013年   17篇
  2012年   18篇
  2011年   28篇
  2010年   21篇
  2009年   53篇
  2008年   69篇
  2007年   66篇
  2006年   48篇
  2005年   35篇
  2004年   38篇
  2003年   29篇
  2002年   16篇
  2001年   19篇
  2000年   16篇
  1999年   10篇
  1998年   6篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1954年   1篇
排序方式: 共有641条查询结果,搜索用时 31 毫秒
21.
M. Grott  F. Sohl 《Icarus》2007,191(1):203-210
Recently, the Cassini spacecraft has detected ongoing geologic activity near the south pole of Saturn's moon Enceladus. In contrast, the satellite's north-polar region is heavily cratered and appears to have been geologically inactive for a long time. We propose that this hemispheric dichotomy is caused by interior dynamics with degree-one convection driving the south-polar activity. We investigate a number of core sizes and internal heating rates for which degree-one convection occurs. The numerical simulations imply that a core radius of less than 100±20 km and an energy input at a rate of 3.0 to 5.5 GW would be required for degree-one convection to prevail. This is within the range of the observed thermal power release near Enceladus' south pole. Provided that Enceladus is not fully differentiated, degree-one convection is found to be a viable mechanism to explain Enceladus' hemispheric dichotomy.  相似文献   
22.
We describe and analyze observations of mutual events of Galilean satellites made at the Yunnan Observatory in February 2003 from CCD imaging for the first time in China. Astrometric positions were deduced from these photometric observations by modelling the relative motion and the photometry of the involved satellites during each event.  相似文献   
23.
There is evidence for the existence of massive planets at orbital radii of several hundred au from their parent stars where the time-scale for planet formation by core accretion is longer than the disc lifetime. These planets could have formed close to their star and then migrated outwards. We consider how the transfer of angular momentum by viscous disc interactions from a massive inner planet could cause significant outward migration of a smaller outer planet. We find that it is in principle possible for planets to migrate to large radii. We note, however, a number of effects which may render the process somewhat problematic.  相似文献   
24.
The irregular satellites of Jupiter are believed to be captured asteroids or planetesimals. In the present work is studied the direction of capture of these objects as a function of their orbital inclination. We performed numerical simulations of the restricted three-body problem, Sun-Jupiter-particle, taking into account the growth of Jupiter. The integration was made backward in time. Initially, the particles have orbits as satellites of Jupiter, which has its present mass. Then, the system evolved with Jupiter losing mass and the satellites escaping from the planet. The reverse of the escape direction corresponds to the capture direction. The results show that the Lagrangian points L1 and L2 mainly guide the direction of capture. Prograde satellites are captured through these two gates with very narrow amplitude angles. In the case of retrograde satellites, these two gates are wider. The capture region increases as the orbital inclination increases. In the case of planar retrograde satellites the directions of capture cover the whole 360° around Jupiter. We also verified that prograde satellites are captured earlier in actual time than retrograde ones. This paper was presented at the Asteriods, Comets and Meteors meeting held at Búzios, Rio de Janeiro, Brazil in August 2005 and could not be included in the special issue related to that conference.  相似文献   
25.
Infrared spectra from the Spitzer Space Telescope ( SSC ) of many debris discs are well fit with a single blackbody temperature which suggest clearings within the disc. We assume that clearings are caused by orbital instability in multiple planet systems with similar configurations to our own. These planets remove dust-generating planetesimal belts as well as dust generated by the outer disc that is scattered or drifts into the clearing. From numerical integrations, we estimate a minimum planet spacing required for orbital instability (and so planetesimal and dust removal) as a function of system age and planet mass. We estimate that a 108 yr old debris disc with a dust disc edge at a radius of 50 au hosted by an A star must contain approximately five Neptune mass planets between the clearing radius and the iceline in order to remove all primordial objects within it. We infer that known debris disc systems contain at least a fifth of a Jupiter mass in massive planets. The number of planets and spacing required is insensitive to the assumed planet mass. However, an order of magnitude higher total mass in planets could reside in these systems if the planets are more massive.  相似文献   
26.
We have estimated a preliminary error budget for the Italian Spring Accelerometer (ISA) that will be allocated onboard the Mercury Planetary Orbiter (MPO) of the European Space Agency (ESA) space mission to Mercury named BepiColombo. The role of the accelerometer is to remove from the list of unknowns the non-gravitational accelerations that perturb the gravitational trajectory followed by the MPO in the strong radiation environment that characterises the orbit of Mercury around the Sun. Such a role is of fundamental importance in the context of the very ambitious goals of the Radio Science Experiments (RSE) of the BepiColombo mission. We have subdivided the errors on the accelerometer measurements into two main families: (i) the pseudo-sinusoidal errors and (ii) the random errors. The former are characterised by a periodic behaviour with the frequency of the satellite mean anomaly and its higher order harmonic components, i.e., they are deterministic errors. The latter are characterised by an unknown frequency distribution and we assumed for them a noise-like spectrum, i.e., they are stochastic errors. Among the pseudo-sinusoidal errors, the main contribution is due to the effects of the gravity gradients and the inertial forces, while among the random-like errors the main disturbing effect is due to the MPO centre-of-mass displacements produced by the onboard High Gain Antenna (HGA) movements and by the fuel consumption and sloshing. Very subtle to be considered are also the random errors produced by the MPO attitude corrections necessary to guarantee the nadir pointing of the spacecraft. We have therefore formulated the ISA error budget and the requirements for the satellite in order to guarantee an orbit reconstruction for the MPO spacecraft with an along-track accuracy of about 1 m over the orbital period of the satellite around Mercury in such a way to satisfy the RSE requirements.  相似文献   
27.
Pre-Cassini images of Saturn's small icy moon Enceladus provided the first indication that this satellite has undergone extensive resurfacing and tectonism. Data returned by the Cassini spacecraft have proven Enceladus to be one of the most geologically dynamic bodies in the Solar System. Given that the diameter of Enceladus is only about 500 km, this is a surprising discovery and has made Enceladus an object of much interest. Determining Enceladus' interior structure is key to understanding its current activity. Here we use the mean density of Enceladus (as determined by the Cassini mission to Saturn), Cassini observations of endogenic activity on Enceladus, and numerical simulations of Enceladus' thermal evolution to infer that this satellite is most likely a differentiated body with a large rock-metal core of radius about 150 to 170 km surrounded by a liquid water-ice shell. With a silicate mass fraction of 50% or more, long-term radiogenic heating alone might melt most of the ice in a homogeneous Enceladus after about 500 Myr assuming an initial accretion temperature of about 200 K, no subsolidus convection of the ice, and either a surface temperature higher than at present or a porous, insulating surface. Short-lived radioactivity, e.g., the decay of 26Al, would melt all of the ice and differentiate Enceladus within a few million years of accretion assuming formation of Enceladus at a propitious time prior to the decay of 26Al. Long-lived radioactivity facilitates tidal heating as a source of energy for differentiation by warming the ice in Enceladus so that tidal deformation can become effective. This could explain the difference between Enceladus and Mimas. Mimas, with only a small rock fraction, has experienced relatively little long-term radiogenic heating; it has remained cold and stiff and less susceptible to tidal heating despite its proximity to Saturn and larger eccentricity than Enceladus. It is shown that the shape of Enceladus is not that of a body in hydrostatic equilibrium at its present orbital location and rotation rate. The present shape could be an equilibrium shape corresponding to a time when Enceladus was closer to Saturn and spinning more rapidly, or more likely, to a time when Enceladus was spinning more rapidly at its present orbital location. A liquid water layer on Enceladus is a possible source for the plume in the south polar region assuming the survivability of such a layer to the present. These results could place Enceladus in a category similar to the large satellites of Jupiter, with the core having a rock-metal composition similar to Io, and with a deep overlying ice shell similar to Europa and Ganymede. Indeed, the moment of inertia factor of a differentiated Enceladus, C/MR2, could be as small as that of Ganymede, about 0.31.  相似文献   
28.
王慧珍  王广兴  牛飞  苏醒 《测绘科学》2021,46(1):76-83,92
针对低轨卫星星座有待合理化设计的问题,深入研究了低轨卫星星座增强北斗三号系统定位性能。分析轨道高度、轨道倾角、星座构型对星座覆盖性能的影响,仿真北斗三号、GPS和3种不同类型的低轨星座,研究各低轨星座与北斗三号、GPS的组合系统在所选7个测站以及全球范围内的可见卫星数和PDOP值分布。结果表明低轨卫星对北斗三号的增强效果主要与低轨卫星数目有关,且不同轨道倾角的组合低轨星座有利于均衡系统在全球范围内的可见卫星数与PDOP值分布。低轨卫星有望通过改善卫星观测几何构型提高北斗三号系统的定位性能,且增强效果与低轨星座构型密切相关。  相似文献   
29.
Earth’s life-support systems are in rapid decline, yet we have few metrics or indicators with which to track these changes. The world’s governments are calling for biodiversity and ecosystem-service monitoring to guide and evaluate international conservation policy as well as to incorporate natural capital into their national accounts. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has been tasked with setting up this monitoring system. Here we explore the immediate feasibility of creating a global ecosystem-service monitoring platform under the GEO BON framework through combining data from national statistics, global vegetation models, and production function models. We found that nine ecosystem services could be annually reported at a national scale in the short term: carbon sequestration, water supply for hydropower, and non-fisheries marine products, crop, livestock, game meat, fisheries, mariculture, and timber production. Reported changes in service delivery over time reflected ecological shocks (e.g., droughts and disease outbreaks), highlighting the immediate utility of this monitoring system. Our work also identified three opportunities for creating a more comprehensive monitoring system. First, investing in input data for ecological process models (e.g., global land-use maps) would allow many more regulating services to be monitored. Currently, only 1 of 9 services that can be reported is a regulating service. Second, household surveys and censuses could help evaluate how nature affects people and provides non-monetary benefits. Finally, to forecast the sustainability of service delivery, research efforts could focus on calculating the total remaining biophysical stocks of provisioning services. Regardless, we demonstrated that a preliminary ecosystem-service monitoring platform is immediately feasible. With sufficient international investment, the platform could evolve further into a much-needed system to track changes in our planet's life-support systems.  相似文献   
30.
Mutual events between natural satellites include mutual occultation and mutual eclipse. Mutual eclipse is another kind of mutual occultation as viewed from the center of the Sun instead of the Earth. Two mutual eclipses of J2 Europa by J1 Io (2009 Aug. 28 and Sept. 12) were observed at Yunnan Observatory during the PHEMU09 international campaign. We will calculate the astrometric data of these Galilean satellites by analyzing and fitting the light curves we obtained. The limb-darkening was considered during...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号