首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1086篇
  免费   232篇
  国内免费   334篇
测绘学   258篇
大气科学   491篇
地球物理   168篇
地质学   317篇
海洋学   170篇
天文学   60篇
综合类   87篇
自然地理   101篇
  2024年   7篇
  2023年   15篇
  2022年   43篇
  2021年   59篇
  2020年   47篇
  2019年   61篇
  2018年   31篇
  2017年   55篇
  2016年   93篇
  2015年   81篇
  2014年   72篇
  2013年   75篇
  2012年   82篇
  2011年   66篇
  2010年   61篇
  2009年   71篇
  2008年   96篇
  2007年   104篇
  2006年   83篇
  2005年   84篇
  2004年   58篇
  2003年   60篇
  2002年   37篇
  2001年   22篇
  2000年   40篇
  1999年   34篇
  1998年   25篇
  1997年   12篇
  1996年   12篇
  1995年   15篇
  1994年   12篇
  1993年   7篇
  1992年   11篇
  1991年   7篇
  1990年   4篇
  1989年   4篇
  1988年   4篇
  1987年   1篇
  1985年   1篇
排序方式: 共有1652条查询结果,搜索用时 31 毫秒
71.
应用气相色谱-气体同位素质谱(GC-C-IRMS)分析正构烷烃单体碳同位素之前,需要对饱和烃样品中正构烷烃和异构烷烃进行预分离、富集,在预分离和富集过程中正构烷烃单体碳同位素是否发生分馏是高精度分析正构烷烃单体碳同位素比值(δ~(13)C)的关键。本文以正构烷烃混合溶液为对象,利用柱色谱、5■分子筛络合、环己烷-正戊烷混合溶剂两次洗脱,GC-C-IRMS分析正构烷烃单体碳同位素,研究前处理过程中正构烷烃单体碳同位素是否发生分馏。结果表明:使用柱色谱分离前后,多数正构烷烃单体碳同位素比值相差-0.2‰~0.2‰;当5■分子筛不完全络合时,未络合的正构烷烃单体碳同位素比值偏重约0.7‰,可能发生了微弱的碳同位素分馏,但并未影响洗脱后的正构烷烃单体碳同位素比值;使用环己烷-正戊烷混合溶剂洗脱前后,碳同位素比值相差-0.2‰~0.5‰,以同样方式洗脱第二次,获得的正构烷烃单体碳同位素比值与模拟样品相差-0.3‰~0.2‰。分析不同回收率(20%)正构烷烃的单体碳同位素比值,处理前后的差值基本在0.3‰以内,可见当正构烷烃回收率低至20%左右时,其单体碳同位素仍未发生明显分馏。柱色谱分离-5■分子筛络合-混合溶剂洗脱方法适用于回收率大于20%的正构烷烃单体碳同位素分析。  相似文献   
72.
模式内部变率是模拟结果不确定性的重要来源,然而它对于1.5℃和2℃升温阈值出现时间不确定性的影响尚不清楚。因此,基于耦合模式比较计划第五阶段(CMIP5)的多模式数据研究了模式内部变率对1.5℃和2℃升温阈值出现时间不确定性的影响以及对未来排放情景的敏感性。结果表明,模式内部变率对升温阈值出现时间模拟的影响与外强迫的影响相当,单个模式内部不同成员达到全球平均1.5℃或2℃增温的年份相差2~12年;其影响具有明显的空间差异,影响极大值出现在欧亚大陆以北洋面、白令海峡周围区域、北美东北部及其与格陵兰岛之间的海域、南半球高纬地区等;低排放情景下模式内部变率的影响大于高排放情景。  相似文献   
73.
The soil water index (SWI) from satellite remote sensing and the observational soil moisture from agricultural meteorological stations in eastern China are used to retrieve soil moisture. The analysis of correlation coefficient (CORR), root-mean-square-error (RMSE) and bias (BIAS) shows that the retrieved soil moisture is convincible and close to the observation. The method can overcome the difficulties in soil moisture observation on a large scale and the retrieved soil moisture may reflect the distribution of the real soil moisture objectively. The retrieved soil moisture is used as an initial scheme to replace initial conditions of soil moisture (NCEP) in the model MM5V3 to simulate the heavy rainfall in 1998. Three heavy rainfall processes during 13–14 June, 18–22 June, and 21–26 July 1998 in the Yangtze River valley are analyzed. The first two processes show that the intensity and location of simulated precipitation from SWI are better than those from NCEP and closer to the observed values. The simulated heavy rainfall for 21–26 July shows that the update of soil moisture initial conditions can improve the model’s performance. The relationship between soil moisture and rainfall may explain that the stronger rainfall intensity for SWI in the Yangtze River valley is the result of the greater simulated soil moisture from SWI prior to the heavy rainfall date than that from NCEP, and leads to the decline of temperature in the corresponding area in the heavy rainfall days. Detailed analysis of the heavy rainfall on 13–14 June shows that both land-atmosphere interactions and atmospheric circulation were responsible for the heavy rainfall, and it shows how the SWI simulation improves the simulation. The development of mesoscale systems plays an important role in the simulation regarding the change of initial soil moisture for SWI.  相似文献   
74.
网格嵌套技术对一次中尺度对流系统降水过程模拟的影响   总被引:6,自引:5,他引:1  
侯瑞钦  程麟生 《高原气象》2006,25(3):451-463
利用非静力中尺度模式MM5对2002年7月22日12:00~23日12:00(世界时,下同)长江流域的一次梅雨锋暴雨过程进行数值模拟试验,主要讨论了网格嵌套技术对降水和中尺度对流系统的影响。结果表明:三重嵌套在D1,D2域选用积云参数化方案后,模拟的雨区收缩,虚假降水中心相对减少,降水强度及分布更接近观测值。在模式非线性动力、热力及湿物理过程共同驱动下,通过嵌套网格的双向相互作用,使可分辨云尺度的细网格域D3将其信息通过嵌套边界向次细网格域D2传递,然后再通过D2域边界向粗网格域D1域传递。同样,动力、热力反馈也会反向进行。结果将有助于改进各网格域的预报效果。但对D1网格域系统位置及其发展演变过程的影响相对小些;另外,通过双向多重嵌套,可提高模式预报区域的分辨率,特别是提高模式关键预报区域的分辨率,这也就有可能改进预报的中尺度物理场,使其能够较真实地描写大气实况。  相似文献   
75.
刘英  柳崇健  徐辉  赵永明 《高原气象》2006,25(4):651-657
利用PSU/NCAR非静力中尺度模式MM5V3,对影响我国北方一次非汛期突发性强降水过程实例,进行了三重嵌套模式区域采用若干不同降水方案(特别是采用显式微物理方案与积云对流参数化方案若干组合)的对比试验,在揭示物理耗散技术正是通过将模式水平扩散方案纠正到符合热力学第二定律的约束而使该中尺度模式的模拟精度和模拟质量获得明显提高的物理实质的同时,从一个侧面证实了数值模式引入第二定律对提高数值天气预报准确率的重要性。  相似文献   
76.
MM5三维变分系统在北京地区冷暖季背景场误差的对比分析   总被引:4,自引:2,他引:2  
NMC方法是目前较广泛采用的一种对模式背景场误差协方差进行统计分析的一种方法。本文根据积累的2002年8月份和2003年2月份各一个月模式预报结果,采用NMC方法,计算了中尺度模式MM5V3在北京地区的冷暖季背景场误差,详细给出其气候统计特征。通过对比分析发现,背景场误差特征对于不同的模式变量、水平分辨率、垂直层各不相同,冷暖季背景场误差也有不同的特征,其差别主要表现在风场。这些特征与模式模拟区域的平均天气状况相对应,同化应该在各模式区域分别进行。MM5三维变分系统在北京地区的实际应用中,应发展根据实际季节变换背景场误差协方差矩阵的方法。  相似文献   
77.
Extreme high temperature(EHT)events are among the most impact-related consequences related to climate change,especially for China,a nation with a large population that is vulnerable to the climate warming.Based on the latest Coupled Model Intercomparison Project Phase 6(CMIP6),this study assesses future EHT changes across China at five specific global warming thresholds(1.5℃-5℃).The results indicate that global mean temperature will increase by 1.5℃/2℃ before 2030/2050 relative to pre-industrial levels(1861-1900)under three future scenarios(SSP1-2.6,SSP2-4.5,and SSP5-8.5),and warming will occur faster under SSP5-8.5 compared to SSP1-2.6 and SSP2-4.5.Under SSP5-8.5,global warming will eventually exceed 5℃ by 2100,while under SSP1-2.6,it will stabilize around 2℃ after 2050.In China,most of the areas where warming exceeds global average levels will be located in Tibet and northern China(Northwest China,North China and Northeast China),covering 50%-70%of the country.Furthermore,about 0.19-0.44 billion people(accounting for 16%-41%of the national population)will experience warming above the global average.Compared to present-day(1995-2014),the warmest day(TXx)will increase most notably in northern China,while the number of warm days(TX90p)and warm spell duration indicator(WSDI)will increase most profoundly in southern China.For example,relative to the present-day,TXx will increase by 1℃-5℃ in northern China,and TX90p(WSDI)will increase by 25-150(10-80)days in southern China at 1.5℃-5℃ global warming.Compared to 2℃-5℃,limiting global warming to 1.5℃ will help avoid about 36%-87%of the EHT increases in China.  相似文献   
78.
2018-05高分五号(GF-5)卫星发射升空,其上搭载的全谱段成像仪在热红外8—13 μm谱段范围内具有4个温度反演通道(B09,B10,B11,B12),空间分辨率设计优于40 m,在国内民用传感器领域实现了由单通道向多通道、中空间分辨率向高空间分辨率的跨越式突破,使得GF-5卫星热红外数据在地表热环境遥感领域具有极其重要应用价值。本研究基于GF-5的4个热红外通道的通道响应函数,利用全球742条TIGR(Thermodynamic Initial Guess Retrieval)探空廓线数据,进行不同观测角度、水汽含量和海表发射率条件下的MODTRAN4.0(Moderate resolution atmospheric Transmittance and Radiance code4.0)辐射传输过程模拟,基于模拟结果分别对两通道、三通道和四通道劈窗算法海表温度SST( Sea Surface Temperature)反演系数进行修订,并分析观测角度、水汽含量和海表发射率对不同通道组合的精度影响,并通过GF-5卫星实际反演的SST结果进行验证。GF-5全谱段成像仪SST反演两通道劈窗算法组合共有6种,即B09-B10、B09-B11、B09-B12、B10-B11、B10-B12、B11-B12;三通道劈窗算法组合共有4种,即B09-B10-B11、B09-B10-B12、B09-B11-B12、B10-B11-B12;四通道劈窗算法组合1种,即B09-B10-B11-B12。通过对不同通道组合形式研究发现,水汽含量对SST反演精度有较大的影响,且温度反演的精度随着水汽含量的增加而降低;其次是观测角度,SST反演精度随着观测天顶角的增大而降低;最后是发射率的影响,两通道、三通道和四通道劈窗算法SST反演精度随着发射率的变化总体在0.1 K以内变化。最后以大亚湾核电站周围海域为验证区,用GF-5热红外遥感影像进行SST的反演并做误差分析,结果表明B09-B10通道SST反演实际误差为0.57 K,反演精度较高,实际误差与理论模拟误差相差0.24 K,差异的来源主要包括辐射定标和传感器噪声等要素影响,其他通道形式反演精度有待于传感器响应稳定后进一步验证。  相似文献   
79.
朱德辉  杜博  张良培 《遥感学报》2020,24(4):427-438
高光谱遥感影像具有光谱分辨率极高的特点,承载了大量可区分不同类型地物的诊断性光谱信息以及区分亚类相似地物之间细微差别的光谱信息,在目标探测领域具有独特的优势。与此同时,高光谱遥感影像也带来了数据维数高、邻近波段之间存在大量冗余信息的问题,高维度的数据结构往往使得高光谱影像异常目标类和背景类之间的可分性降低。为了缓解上述问题,本文提出了一种基于波段选择的协同表达高光谱异常探测算法。首先,使用最优聚类框架对高光谱波段进行选择,获得一组波段子集来表示原有的全部波段,使得高光谱影像异常目标类与背景类之间的可分性增强。然后使用协同表达对影像上的像元进行重建,由于异常目标类和背景类之间的可分性增强,对异常目标像元进行协同表达时将会得到更大的残差,异常目标像元的输出值增大,可以更好地实现异常目标和背景类的分离。本文使用了3组高光谱影像数据进行异常目标探测实验,实验结果表明,该方法与其他现有高光谱异常目标探测算法对比,曲线下面积AUC(Area Under Curve)值更高,可以更好地实现异常目标与背景分离,能够更有效地对高光谱影像进行异常目标探测。  相似文献   
80.
针对空间分辨率比率较大尺度差异下的高分五号(GF-5)与高分一号(GF-1)卫星影像的空—谱融合问题,提出多传感器影像融合策略:一方面,通过现有空—谱融合方法的分步融合得到融合影像;另一方面,在分步融合理论基础上,推导得出一体化融合基础框架,并进一步提出基于多分辨率分析的多传感器一体化融合方法,缓解现有方法因空间分辨率比率过大导致影像空、谱互补信息难以有效集成的问题。其中,提出的一体化融合方法基于调制传递函数MTF (Modulation Transfer Function)滤波对多传感器影像空间(高频)和光谱(低频)分量进行分解提取,并充分考虑多传感器高空间分辨率影像与高光谱分辨率影像之间的关系,以及高光谱分辨率影像波段间关系,设计合理的融合权重,最终可得到具有最高空间分辨率和最高光谱分辨率的融合影像。通过GF-1全色影像、GF-1多光谱影像、GF-5高光谱影像数据对提出方法进行实验验证,结果表明:本文方法可有效集成多传感器影像间的空、谱互补信息,得到较优融合结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号