首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Future changes in precipitation over global monsoon domains and their adjacent dry regions are investigated using present-day climate simulations(1986–2005)and future climate simulations under the Representative Concentration Pathways(RCP4.5)scenario by the Coupled Model Intercomparison Project Phase 5(CMIP5)models.In the present-day climate simulations,high reproducibility of the extents of global monsoon domains and dry regions is observed from the multi-model ensemble(MME)result;the associated local summer precipitation variation and its interannual variability are also successfully reproduced.In the future,the global monsoon domains are projected to be expanded,while the dry regions are expected to initially increase and then decrease.The summer precipitation and its variability show significant increases over most global monsoon domains and obvious decreases over their adjacent dry regions.These results indicate that currently wet regions will become wetter and dry areas will be dryer under global warming conditions.Further analysis indicates that changes in summer precipitation over global monsoon and dry regions can be interpreted as moisture convergence changes associated with changes in horizontal moisture transport.  相似文献   

2.
Climate changes in future 21 st century China and their uncertainties are evaluated based on 22 climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5). By 2081–2100, the annual mean surface air temperature(SAT) is predicted to increase by 1.3℃± 0.7℃, 2.6℃± 0.8℃ and 5.2℃± 1.2℃ under the Representative Concentration Pathway(RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, relative to 1986–2005, respectively. The future change in SAT averaged over China increases the most in autumn/winter and the least in spring, while the uncertainty shows little seasonal variation.Spatially, the annual and seasonal mean SAT both show a homogeneous warming pattern across China, with a warming rate increasing from southeastern China to the Tibetan Plateau and northern China, invariant with time and emissions scenario.The associated uncertainty in SAT decreases from northern to southern China. Meanwhile, by 2081–2100, the annual mean precipitation increases by 5% ± 5%, 8% ± 6% and 12% ± 8% under RCP2.6, RCP4.5 and RCP8.5, respectively. The national average precipitation anomaly percentage, largest in spring and smallest in winter, and its uncertainty, largest in winter and smallest in autumn, show visible seasonal variations. Although at a low confidence level, a homogeneous wetting pattern is projected across China on the annual mean scale, with a larger increasing percentage in northern China and a weak drying in southern China in the early 21 st century. The associated uncertainty is also generally larger in northern China and smaller in southwestern China. In addition, both SAT and precipitation usually show larger seasonal variability on the sub-regional scale compared with the national average.  相似文献   

3.
This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years.It is shown that observed climate change in China bears a strong similarity with the global average.The country-averaged annual mean surface air temperature has increased by 1.1℃over the past 50 years and 0.5-0.8℃over the past 100 years,slightly higher than the global temperature increase for the same periods.Northern China and winter have experienced the greatest increases in surface air temperature.Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable,with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase,and North China a severe drought.Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings,show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases,while the temperature change of the first half of the 20th century may be due to solar activity,volcanic eruptions and sea surface temperature change.A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC(National Climate Center,China Meteorological Administration)and the IAP(Institute of Atmospheric Physics,Chinese Academy of Sciences),as well as 40 models developed overseas,indicate a potential significant warming in China in the 21st century,with the largest warming set to occur in winter months and in northern China.Under varied emission scenarios,the country-averaged annual mean temperature is projected to increase by 1.5-2.1℃by 2020,2.3-3.3℃by 2050, and by 3.9-6.0℃by 2100,in comparison to the 30-year average of 1961 1990.Most models project a 10% 12% increase in annual precipitation in China by 2100,with the trend being particularly evident in Northeast and Northwest China,but with parts of central China probably undergoing a drying trend.Large uncertainty exists in the projection of precipitation,and further studies are needed.Furthermore,anthropogenic climate change will probably lead to a weaker winter monsoon and a stronger summer monsoon in eastern Asia.  相似文献   

4.
More and more rainstorms and other extreme weather events occur in the context of global warming, which may increase the risks of landslides. In this paper, changes of landslides in the 21 st century of China under the high emission scenario RCP8.5(Representative Concentration Pathway) are projected by using a statistical landslide forecasting model and the regional climate model RegCM4.0. The statistical landslide model is based on an improved landslide susceptibility map of China and a rainfall intensity–duration threshold. First, it is driven by observed rainfall and RegCM4.0 rainfall in 1980–99, and it can reproduce the spatial distribution of landslides in China pretty well.Then, it is used to forecast the landslide changes over China in the future under the RCP8.5 scenario. The results consistently reveal that landslides will increase significantly in most areas of China, especially in the southeastern, northeastern, and western parts of Northwest China. The change pattern at the end of the 21 st century is generally consistent with that in the middle of the 21 st century, but with larger increment and magnitude. In terms of the probability,the proportion of grid points that are very likely and extremely likely to experience landslides will also increase.  相似文献   

5.
Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of China under the RCP scenarios, with the northern regions showing greater warming than the southern regions. The warming tendency from 2011 to 2100 is 0.06°C/10 a for RCP2.6, 0.24°C/10 a for RCP4.5, and 0.63°C/10 a for RCP8.5. The projected time series of annual temperature have similar variation tendencies as the new greenhouse gas (GHG) emission scenario pathways, and the warming under the lower emission scenarios is less than under the higher emission scenarios. The regional averaged precipitation will increase, and the increasing precipitation in the northern regions is significant and greater than in the southern regions in China. It is noted that precipitation will tend to decrease in the southern parts of China during the period of 2011-2040, especially under RCP8.5. Compared with the changes over the globe and some previous projections, the increased warming and precipitation over China is more remarkable under the higher emission scenarios. The uncertainties in the projection are unavoidable, and further analyses are necessary to develop a better understanding of the future changes over the region.  相似文献   

6.
SOME ADVANCES IN CLIMATE WARMING IMPACT RESEARCH IN CHINA SINCE 1990   总被引:1,自引:0,他引:1  
Increasing the concentration of greenhouse gases in the atmosphere will strengthen the naturalgreenhouse effect,which could lead to global climate warming and more other changes.China is alargely agricultural country with a large size of population and the relative shortages of farminglands and water resources,thus increasing the importance of climate warming for national economydevelopment.Therefore,Chinese government and scientists have paid great attention to theimpact-assessment of climate warming on national economy in China,especially during the past 10years.This presentation will briefly describe some major issues of climate warming impact researchon national vegetation,agriculture,forest,water resources,energy use and regional sea level forChina,etc.As a result,all climate change scenarios derived by GCMs suggest a substantial change in thecharacteristic natural vegetation types.It is also shown that comparing with the distributionsimulated under the normal time period 1951—1980 as the present climate,by 2050 large changesin cropping systems would occur almost everywhere in China.Climate warming would lead toincrease cropping diversification and multiplication.Unfortunately,the possible net balancebetween precipitation and evapotranspiration would be negative and it would lead to reduce thegrain production in China significantly due to enhanced moisture stress in soil.The most evidentinfluence of climate warming on water resources would happen in Huanghe-Huaihe-Haihe Basin andthe water supply-demand deficit would be substantially enhanced in this area.And also,a warmerclimate for China will alter the energy requirement for domestic heating and cooling,that is,reduce energy use for heating in northern China and increase energy consumption for cooling insouthern China.  相似文献   

7.
Using the global chemistry and transport model MOZART,the simulated distributions of tropospheric hydroxyl free radicals(OH) over China and its sensitivities to global emissions of carbon monoxide(CO),nitrogen oxide(NO x),and methane(CH 4) were investigated in this study.Due to various distributions of OH sources and sinks,the concentrations of tropospheric OH in east China are much greater than in west China.The contribution of NO + perhydroxyl radical(HO 2) reaction to OH production in east China is more pronounced than that in west China,and because of the higher reaction activity of non-methane volatile organic compounds(NMVOCs),the contributions to OH loss by NMVOCs exceed those of CO and take the dominant position in summer.The results of the sensitivity runs show a significant increase of tropospheric OH in east China from 1990 to 2000,and the trend continues.The positive effect of double emissions of NO x on OH is partly offset by the contrary effect of increased CO and CH 4 emissions:the double emissions of NO x will cause an increase of OH of 18.1%-30.1%,while the increases of CO and CH 4 will cause a decrease of OH of 12.2%-20.8% and 0.3%-3.0%,respectively.In turn,the lifetimes of CH 4,CO,and NO x will increase by 0.3%-3.1% with regard to double emissions of CH 4,13.9%-26.3% to double emissions of CO and decrease by 15.3%-23.2% to double emissions of NO x.  相似文献   

8.
The future changes in the relationship between the South Asian summer monsoon (SASM) and the East Asian summer monsoon (EASM) are investigated by using the high-emissions Shared Socioeconomic Pathway 5-8.5 (SSP5- 8.5) experiments from 26 coupled models that participated in the phase 6 of the Coupled Model Intercomparison Project (CMIP6). Six models, selected based on their best performance in simulating the upper- and lower-level pathways related to the SASM-EASM teleconnection in the historical run, can capture the positive relationship between the SASM and the rainfall over northern China. In the future scenario, the upper-level teleconnection wave pattern connecting the SASM and the EASM exhibits a significant weakening trend, due to the rainfall anomalies decrease over the northern Indian Peninsula in the future. At the lower level, the western North Pacific anticyclone is projected to strengthen in the warming climate. The positive (negative) rainfall anomalies associated with positive (negative) SASM rainfall anomalies are anticipated to extend southward from northern China to the Yangtze-Huai River valley, the Korea Peninsula, and southern Japan. The connection in the lower-level pathway may be strengthened in the future.  相似文献   

9.
20世纪全球增暖最显著的区域   总被引:6,自引:0,他引:6  
Having analyzed a global grid temperature anomaly data set and some sea level pressure data during the last century, we found the following facts. Firstly, the annual temperature change with a warming trend of about 0.6℃/100 years in the tropical area over Indian to the western Pacific Oceans was most closely correlated to the global mean change. Therefore, the temperature change in this area might serve as an indicator of global mean change at annual and longer time scales. Secondly, a cooling of about -0.3℃ / 100 years occurred over the northern Atlantic. Thirdly, a two-wave pattern of temperature change, warming over northern Asia and northwestern America and cooling over the northern Atlantic and the northern Pacific, occurred during the last half century linked to strengthening westerlies over the northern Atlantic and the weakening Siberian High. Fourthly, a remarkable seasonal difference occurred over the Eurasian continent, with cooling (warming) in winter (summer) during 1896-1945, and warming (cooling) in winter (summer) during 1946-1995. The corresponding variations of the North Atlantic Oscillation and the Southern Oscillation were also discussed.  相似文献   

10.
Two approaches of statistical downscaling were applied to indices of temperature extremes based on percentiles of daily maximum and minimum temperature observations at Beijing station in summer during 1960-2008. One was to downscale daily maximum and minimum temperatures by using EOF analysis and stepwise linear regression at first, then to calculate the indices of extremes; the other was to directly downscale the percentile-based indices by using seasonal large-scale temperature and geo-potential height records. The cross-validation results showed that the latter approach has a better performance than the former. Then, the latter approach was applied to 48 meteorological stations in northern China. The cross-validation results for all 48 stations showed close correlation between the percentile-based indices and the seasonal large-scale variables. Finally, future scenarios of indices of temperature extremes in northern China were projected by applying the statistical downscaling to Hadley Centre Coupled Model Version 3 (HadCM3) simulations under the Representative Concentration Pathways 4.5 (RCP 4.5) scenario of the Fifth Coupled Model Inter-comparison Project (CMIP5). The results showed that the 90th percentile of daily maximum temperatures will increase by about 1.5℃, and the 10th of daily minimum temperatures will increase by about 2℃ during the period 2011-35 relative to 1980-99.  相似文献   

11.
Lightning is one of the most important natural sources of atmospheric NOx.The authors investigate the2000–2050 changes in NOx emissions from lightning using the global three-dimensional Goddard Earth Observing System chemical transport model(GEOS-Chem)driven by meteorological fields from the Goddard Institute for Space Studies(GISS)general circulation model(GCM)3.Projected changes in climate over 2000–2050are based on the Intergovernmental Panel on Climate Change(IPCC)A1B scenario.The global NOx emission from lightning is simulated to be 4.8 Tg N in present day and to increase by about 16.7%over 2000–2050 as a result of the future climate change.The largest present-day emissions and climate-induced changes are found in the upper troposphere in the tropics.Regionally in eastern China(20–55 N,98–125 E),NOx emissions from lighting is simulated to be 0.3 Tg N(6.3%of the global total emission)in present day and to increase by 26.7%over2000–2050.The simulated changes in NOx from lightening correspond well with the projected future changes in convective precipitation.  相似文献   

12.
This paper addresses the ‘ice-free Arctic’ issue under the future global warming scenario. Four coupled climate models used in the third phase of the Coupled Model Intercomparison Project (CMIP3) were selected to project summer climate conditions over East Asia once the Arctic becomes ice-free. The models project that an ice-free Arctic summer will begin in the 2060s under the SRESA1B (according to IPCC Special Reports on Emissions Scenarios) simulations. Our results show that the East Asian summer monsoons will tend to be stronger and that the water vapor transport to central northern China will be strengthened, leading to increased summer precipitation in central northern China. The models also project an intensified Antarctic Oscillation, a condition which favors increased precipitation in South China’s Yangtze River Valley. The overall precipitation in Northwest China is projected to increase under ice-free Arctic summer conditions.  相似文献   

13.
The climate change in China shows a considerable similarity to the global change, though there still exist some significant differences between them. In the context of the global warming, the annual mean surface air temperature in the country as a whole has significantly increased for the past 50 years and 100 years, with the range of temperature increase slightly greater than that in the globe. The change in precipitation trends for the last 50 and 100 years was not significant, but since 1956 it has assumed a weak increasing trend. The frequency and intensity of main extreme weather and climate events have also undergone a significant change. The researches show that the atmospheric CO2 concentration in China has continuously increased and the sum of positive radiative forcings produced by greenhouse gases is probably responsible for the country-wide climate warming for the past 100 years, especially for the past 50 years. The projections of climate change for the 21st century using global and regional climate models indicate that, in the future 20-100 years, the surface air temperature will continue to increase and the annual precipitation also has an increasing trend for most parts of the country.  相似文献   

14.
This study investigates the impact of global warming on drought/flood patterns in China at the end of the 21st century based on the simulations of 22 global climate models and a regional climate model(RegCM3) under the SRES(Special Report on Emissions Scenarios) A1B scenario.The standardized precipitation index(SPI),which has well performance in monitoring the drought/flood characteristics(in terms of their intensity,duration,and spatial extent) in China,is used in this study.The projected results of 22 coupled models and the RegCM3 simulation are consistent.These models project a decrease in the frequency of droughts in most parts of northern China and a slight increase in the frequency in some parts of southern China.Considering China as a whole,the spatial extents of droughts are projected to be significantly reduced.In contrast,future flood events over most parts of China are projected to occur more frequently with stronger intensity and longer duration than those prevalent currently.Additionally,the spatial extents of flood events are projected to significantly increase.  相似文献   

15.
Future changes in tropical cyclone(TC)activity over the western North Pacific(WNP)under the representative concentration pathway RCP4.5 are investigated based on a set of 21 st century climate change simulations over East Asia with the regional climate model RegCM4 driven by five global models.The RegCM4 reproduces the major features of the observed TC activity over the region in the present-day period of 1986-2005,although with the underestimation of the number of TC genesis and intensity.A low number of TCs making landfall over China is also simulated.By the end of the 21st century(2079-98),the annual mean frequency of TC genesis and occurrence is projected to increase over the WNP by16%and 10%,respectively.The increase in frequency of TC occurrence is in good agreement among the simulations,with the largest increase over the ocean surrounding Taiwan Island and to the south of Japan.The TCs tend to be stronger in the future compared to the present-day period of 1986-2005,with a large increase in the frequency of strong TCs.In addition,more TCs landings are projected over most of the China coast,with an increase of~18%over the whole Chinese territory.  相似文献   

16.
1. IntroductionFor the latest 15 years, the climate change hasbeen paid more attention by the policy-makers, scien-tists, and the public. The global warming of 0.4-0.8°Cfor the 20th century has been measured by the instru-mental observations. The atmospheric concentrationof CO2 increased from 280 ppm for the period 1000-1750 to 368 ppm in the year 2000 with an increase of27%-35%. In the light of new evidence and taking intoaccount the remaining uncertainties, most of the ob-served warming o…  相似文献   

17.
The ability of 42 Coupled Model Intercomparison Project Phase 5(CMIP5) models in simulating the annual and seasonal temperature and precipitation over China is first examined by using their historical experiments for 1986–2005, and then 39 relatively reliable models are chosen to project temperature and precipitation changes against the natural internal variability over the country under the Representative Concentration Pathways(RCP) scenarios in the 21 st century. The result shows the temperature continuing to increase, especially in northern China. The annual warming for 2081–2099 relative to 1986–2005 over the whole of the country is larger than the background variability, with the multimodel median changes under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 being 9.9, 19.3, 22.8, and 35.9 times greater than one standard deviation of internal variability, respectively. The annual precipitation is projected to increase by 6.1%, 9.3%, 9.6%, and 16.2% for 2081–2099 relative to 1986–2005 under RCP2.6, RCP4.5, RCP6.0, and RCP8.5 respectively, while large changes with high model agreement only occur over the northern Tibetan Plateau and Northeast China, which is mainly due to the robust changes in winter and spring under RCP6.0 and RCP8.5.  相似文献   

18.
Regional extreme cold events have changed notably with recent global warming.Understanding how these cold extremes change in China is an urgent issue.This study examines the responses of the dominant mode of China coldwave intensity (CWI) to global warming by comparing observations with simulations from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4).The leading modes of the CWI derived from empirical orthogonal function (EOF) analysis have different features in different epochs.During the cold period (1957-1979),the leading mode is characterized by centers of extreme values of CWI in northern China; while during the warm period (1980-2009),the leading mode features two maximum loading centers over northern and southern China.The southward extension of the extreme value center is associated with an increase in the intensity of coldwave variations in southern China relative to previous decades.A multi-model ensemble of seven state-of-the-art climate models shows an extension of the maximum loading of the CWI leading mode into southern China by the end of the 21st century (2080-2099) under the A1B global warming scenario (atmospheric CO2 concentration of 720 ppm).These results indicate that the primary response of the leading mode of CWI to global warming might be a southward extension of the extreme value center.This response may be associated with the southward shift of the storm track observed during recent decades.A significant change in the baroclinic growth rates around 40°N is accompanied by a consistent change in synoptic eddies in the troposphere,which may indicate a shift in the preferred latitude for the growth of eddies.As a result,the storm track tends to move southward,suggesting that southern China may experience increased storminess due to increased baroclinic instability in the troposphere.  相似文献   

19.
The interdecadal characteristics of rainfall and temperature in China before and after the abrupt change of the general circulation in 1976 are analyzed using the global 2.5°×2.5° monthly mean reanalysis data from the National Centers for Environmental Prediction of US and the precipitation and temperature data at the 743 stations of China from the National Climate Center of China. The results show that after 1976, springtime precipitation and temperature were anomalously enhanced and reduced respectively in South China, while the reverse was true in the western Yangtze River basin. In summer, precipitation was anomalously less in South China, more in the Yangtze River basin, less again in North China and more again in Northeast China, showing a distribution pattern alternating with negative and positive anomalies (" , +, -, +"). Meanwhile, temperature shows a distribution of warming in South China, cooling in the Yangtze and Huaihe River basins, and warming again in northern China. In autumn, precipitation tended to decrease and temperature tended to increase in in South China and warming was most parts of the country. In winter, the trend across all parts of China. precipitation increased moderately The interdecadal decline of mean temperature in spring and summer in China was mainly due to the daily maximum temperature variation, while the interdecadal increase was mainly the result of the minimum temperature change. The overall warming in autumn (winter) was mostly influenced by the minimum (maximum) temperature variation. These changes were closely related to the north-south shifts of the ascending and descending branches of the Hadley cell, the strengthening and north-south progression of the westerly jet stream, and the atmospheric stratification and water vapor transport conditions.  相似文献   

20.
The Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model version 3 (RegCM3) is used to investigate the climate effects of land use change related to agriculture over China. The model is driven by the European Center for Medium-range Weather Forecast 40-yr Re-Analysis (ERA40)data. Two sets of experiments for 15 yr (1987-2001) are conducted, one with the potential vegetation cover and the other the agricultural land use (AG). The results show that the AG effects on temperature are weak over northern China while in southern China a significant cooling is found in both winter (December-January-February) and summer (June-July-August). The mean cooling in the sub-regions of South China (SC) in winter and the sub-regions of Southeast (SE) China in summer are found to be the greatest,up to 0.5℃ and 0.8℃, respectively. In general, the change of AG leads to a decrease of annual mean temperature by 0.5-1℃ in southern China. Slight change of precipitation in western China and a decrease of precipitation in eastern China are simulated in winter, with the maximum reduction reaching -7.5% over SE. A general decrease of precipitation over northern China and an increase over southern China are simulated in summer,in particular over SE where the increase of precipitation can be up to 7.3%. The AG effects on temperature and precipitation show strong interannual variability. Comparison of the climate effects between AG and the present-day land use (LU) is also performed. In southern China, the ratio of temperature (precipitation)changes caused by AG and LU is greater than (closer to) the ratio of the number of grid cells with changed vegetation cover due to AG and LU variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号