首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55757篇
  免费   5694篇
  国内免费   6497篇
测绘学   13573篇
大气科学   6055篇
地球物理   6357篇
地质学   14378篇
海洋学   4445篇
天文学   5605篇
综合类   4401篇
自然地理   13134篇
  2024年   135篇
  2023年   469篇
  2022年   1786篇
  2021年   2197篇
  2020年   2203篇
  2019年   2222篇
  2018年   1851篇
  2017年   2633篇
  2016年   2568篇
  2015年   2690篇
  2014年   3122篇
  2013年   4200篇
  2012年   3514篇
  2011年   3680篇
  2010年   3032篇
  2009年   3447篇
  2008年   3505篇
  2007年   3578篇
  2006年   3310篇
  2005年   2872篇
  2004年   2563篇
  2003年   2141篇
  2002年   1764篇
  2001年   1526篇
  2000年   1271篇
  1999年   1043篇
  1998年   968篇
  1997年   781篇
  1996年   559篇
  1995年   443篇
  1994年   393篇
  1993年   344篇
  1992年   259篇
  1991年   173篇
  1990年   159篇
  1989年   115篇
  1988年   91篇
  1987年   52篇
  1986年   56篇
  1985年   62篇
  1984年   40篇
  1983年   32篇
  1982年   27篇
  1981年   10篇
  1980年   18篇
  1979年   6篇
  1978年   7篇
  1977年   15篇
  1976年   3篇
  1954年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
基于EOS/MODIS资料的沙尘遥感监测模型研究   总被引:5,自引:1,他引:5  
韩涛  李耀辉  郭铌 《高原气象》2005,24(5):757-764
在EOS MODIS资料可见光波段光谱特性的深入分析的基础上,提出了一种完全用MODIS可见光波段监测沙尘信息的技术方法。充分利用MODIS资料可见光范围波段划分细致的特点,构造了不同的光谱特征判别函数作为决策树的分支,最后用决策树法成功地对几次沙尘暴过程进行了沙尘信息遥感监测。结果表明,该方法具有良好的效果和实用性。  相似文献   
992.
基于遥感信息的华北冬小麦区域生长模型及模拟研究   总被引:21,自引:1,他引:21  
卫星遥感估产和作物生长模拟在作物监测和产量预测方面有各自不可替代的优势。但是,遥感估产难以揭示作物生长发育和产量形成的内在机理,作物模拟在区域应用时初始值的获取和参数的区域化遇到很多困难。如何利用二者的互补性使其相互结合受到人们关注。该文在Wofost模型本地化和区域化的基础上,首次利用同化法的思路探讨了MODIS遥感信息与华北冬小麦生长模拟模型结合的可行性和方法,初步建立了潜在生产水平(水分适宜条件)下区域遥感-作物模拟框架模型(WSPFRS模型)。模拟结果显示:WSPFRS模型对区域尺度的出苗期重新初始化后,模拟的开花期、成熟期空间分布的准确性比Wofost模拟结果有所改进;利用遥感信息对区域尺度上返青期生物量重新初始化后,模拟贮存器官干重的空间分布更接近实际单产的分布,贮存器官干重的高值区与实际高产区基本相符。该研究将为下一步实际水分供应条件下基于遥感信息的冬小麦区域生长模拟研究奠定了基础。  相似文献   
993.
Hydro-ecological modelers often use spatial variation of soil information derived from conventional soil surveys in simulation of hydro-ecological processes over watersheds at mesoscale (10–100 km2). Conventional soil surveys are not designed to provide the same level of spatial detail as terrain and vegetation inputs derived from digital terrain analysis and remote sensing techniques. Soil property layers derived from conventional soil surveys are often incompatible with detailed terrain and remotely sensed data due to their difference in scales. The objective of this research is to examine the effect of scale incompatibility between soil information and the detailed digital terrain data and remotely sensed information by comparing simulations of watershed processes based on the conventional soil map and those simulations based on detailed soil information across different simulation scales. The detailed soil spatial information was derived using a GIS (geographical information system), expert knowledge, and fuzzy logic based predictive mapping approach (Soil Land Inference Model, SoLIM). The Regional Hydro-Ecological Simulation System (RHESSys) is used to simulate two watershed processes: net photosynthesis and stream flow. The difference between simulation based on the conventional soil map and that based on the detailed predictive soil map at a given simulation scale is perceived to be the effect of scale incompatibility between conventional soil data and the rest of the (more detailed) data layers at that scale. Two modeling approaches were taken in this study: the lumped parameter approach and the distributed parameter approach. The results over two small watersheds indicate that the effect does not necessarily always increase or decrease as the simulation scale becomes finer or coarser. For a given watershed there seems to be a fixed scale at which the effect is consistently low for the simulated processes with both the lumped parameter approach and the distributed parameter approach.  相似文献   
994.
Terrestrial ecosystems provide a number of vital services for people and society, such as food, fibre, water resources, carbon sequestration, and recreation. The future capability of ecosystems to provide these services is determined by changes in socio-economic factors, land use, atmospheric composition, and climate. Most impact assessments do not quantify the vulnerability of ecosystems and ecosystem services under such environmental change. They cannot answer important policy-relevant questions such as 'Which are the main regions or sectors that are most vulnerable to global change?’ 'How do the vulnerabilities of two regions compare?’ 'Which scenario is the least harmful for a sector?’This paper describes a new approach to vulnerability assessment developed by the Advanced Terrestrial Ecosystem Analysis and Modelling (ATEAM) project. Different ecosystem models, covering biodiversity, agriculture, forestry, hydrology, and carbon sequestration are fed with the same Intergovernmental Panel on Climate Change (IPCC) scenarios based on the Special Report on Emissions Scenarios (SRES). Each model gives insights into specific ecosystems, as in traditional impact assessments. Moreover, by integrating the results in a vulnerability assessment, the policy-relevant questions listed above can also be addressed. A statistically derived European environmental stratification forms a key element in the vulnerability assessment. By linking it to other quantitative environmental stratifications, comparisons can be made using data from different assessments and spatial scales.  相似文献   
995.
Advanced site-specific knowledge of grain protein content of winter wheat from remote sensing data would provide opportunities to manage grain harvest differently, and to maximize output by adjusting input in fields. In this study, remote sensing data were utilized to predict grain protein content. Firstly, the leaf nitrogen content at winter wheat anthesis stage was proved to be significantly correlated with grain protein content (R2 = 0.36), and spectral indices significantly correlated to leaf nitrogen content at anthesis stage were potential indicators for grain protein content. The vegetation index, VIgreen, derived from the canopy spectral reflectance at green and red bands, was significantly correlated to the leaf nitrogen content at anthesis stage, and also highly significantly correlated to the final grain protein content (R2 = 0.46). Secondly, the external conditions, such as irrigation, fertilization and temperature, had important influence on grain quality. Water stress at grain filling stage can increase grain protein content, and leaf water content is closely related to irrigation levels, therefore, the spectral indices correlated to leaf water content can be potential indicators for grain protein content. The spectral reflectance of TM channel 5 derived from canopy spectra or image data at grain filling stage was all significantly correlated to grain protein content (R2 = 0.31 and 0.37, respectively). Finally, not only this study proved the feasibility of using remote sensing data to predict grain protein content, but it also provided a tentative prediction of the grain protein content in Beijing area using the reflectance image of TM channel 5.  相似文献   
996.
Timely diagnosis of crop diseases in fields is critical for precision on-farm disease management. Remote sensing technology can be used as an effective and inexpensive method to identify diseased plants in a field scale. However, due to the diversity of crops and their associated diseases, application of the technology to agriculture is still in research stage, which needs to be elaborately investigated for algorithm development and standard image processing procedures. In this paper, we examined the applicability of broadband high spatial-resolution ADAR (Airborne Data Acquisition and Registration) remote sensing data to detect rice sheath blight and developed an approach to further explore the applicability. Based on the field symptom measurements, a comprehensive field disease index (DI) was constructed to measure infection severity of the disease and to relate to image sampled infections. In addition to direct band digital number (DN) values, band ratio indices and standard difference indices were used to examine possible correlations between field and image data. The results indicated that the broadband remote sensing imagery has the capability to detect the disease. Some image indices such as RI14, SDI14 and SDI24 worked better than others. A correlation coefficient above 0.62 indicated that these indices would be valuable to use for identification of the rice disease. In the validation analysis, we obtained a small root mean square error (RMS = 9.1), confirming the applicability of the developed method. Although the results were encouraging, it was difficult to discriminate healthy plants from light infection ones when DI < 20 because of their spectral similarities. Hence, it was clear that identification accuracy increases when infection reaches medium-to-severe levels (DI > 35). This phenomenon illustrated that remote sensing images with higher spectral resolution (more bands and narrower bandwidth) were required in order to further examine the capability of separating the light diseased plants from healthy plants.  相似文献   
997.
The purpose of this article is to describe the development of a remotely sensed, historical land-cover change database for the northwestern quarter of Chihuahua, Mexico, The database consists of multi-temporal land-cover classifications and change detection images. The database is developed to facilitate future investigations that examine urban–rural linkages as possible drivers of rural land-use and land-cover changes. To develop the needed land-cover change database, this study uses the North American Landsat Characterization (NALC) MSS triplicates because of their temporal depth and spatial breadth. Challenges exist, however, to effective classification and change detection using the NALC triplicates, including illumination differences across multiple scenes and periods caused by topographic and solar variations and the lack of ground reference data for historic periods. Therefore, creation of the database is a four step process. First, extensive pre-processing is performed to enhance comparability of multi-date images. Pre-processing includes topographic correction, mosaic creation and multi-date radiance normalization. Second, ancillary sources of land-cover data are combined with visual interpretations of enhanced images to define reference pixels used to classify the images using the maximum likelihood algorithm. Third, classification accuracy is assessed. Fourth, post-classification change detection is performed. Results indicate significant image improvements after pre-processing that permit very good overall classification (86.26% classified correctly) and change detection. To conclude, findings are presented that indicate significant changes to arid grasslands/shrublands and forest resources in mountainous regions.  相似文献   
998.
冬、春季的天气影响系统既有共同点,又有不同之处。通过近20a大-暴雪个例的物理成因及卫星云图等特征的分析,总结出有预报意义的指标。  相似文献   
999.
分析了江西农村经济信息网(www.jxagriec.gov.cn)的现状,指出农经网信息服务正面临着挑战,并在此基础上阐述了农经网信息服务的发展思路。  相似文献   
1000.
长江三角洲地区水和热通量的时空变化特征及影响因子   总被引:9,自引:2,他引:9  
文中利用改进的K B模式和牛顿扩散方法及 196 1年以来的长江三角洲 (2 8~ 33°N ,118~ 12 3°E)地区的 4 8个测站的常规气象资料 ,估计了该地区近 4 0a来的蒸散量和感热通量。结合该地区的气温、太阳辐射等气候资料和 196 0年以来该区域土地资源利用变化等有关信息对该地区的潜热通量和感热通量的时 空间变化特征及其可能成因进行了综合分析。结果认为该地区自 2 0世纪 70年代开始平均蒸散量有逐渐减小的趋势 ,与 1980年相比 ,1998年区域年平均蒸散量减小了 2 4mm。区域平均感热通量与蒸散量相比在此期间变化并不明显。通过对该地区的云量、太阳辐射及土地利用变化资料分析认为 ,造成该地区平均蒸散量减少趋势的的原因之一是用于蒸发的能量即太阳辐射的减少 ,而造成太阳辐射减少的可能原因为云量及大气透明度的变化所至 ;原因之二是该地区地表覆盖条件的改变。近 2 0a来 ,该地区的水田、旱地及水域面积占总面积的比率分别减少 1.35 3% ,4 .4 4 2 %和2 .5 97% ,而城镇建设、工矿及其它建设用地面积则增加 3.345 %。耕地及水面的减小和城镇及建设用地面积的增加从整体上使区域平均蒸发量减少。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号