首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1964篇
  免费   214篇
  国内免费   324篇
测绘学   91篇
大气科学   189篇
地球物理   114篇
地质学   418篇
海洋学   395篇
综合类   206篇
自然地理   1089篇
  2024年   32篇
  2023年   82篇
  2022年   89篇
  2021年   111篇
  2020年   63篇
  2019年   70篇
  2018年   52篇
  2017年   56篇
  2016年   70篇
  2015年   72篇
  2014年   177篇
  2013年   97篇
  2012年   101篇
  2011年   111篇
  2010年   108篇
  2009年   144篇
  2008年   112篇
  2007年   111篇
  2006年   151篇
  2005年   114篇
  2004年   114篇
  2003年   88篇
  2002年   68篇
  2001年   68篇
  2000年   36篇
  1999年   37篇
  1998年   22篇
  1997年   31篇
  1996年   17篇
  1995年   34篇
  1994年   11篇
  1993年   14篇
  1992年   8篇
  1991年   8篇
  1990年   9篇
  1989年   7篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   4篇
排序方式: 共有2502条查询结果,搜索用时 15 毫秒
91.
Primary production in the Bering and Chukchi Seas is strongly influenced by the annual cycle of sea ice. Here pelagic and sea ice algal ecosystems coexist and interact with each other. Ecosystem modeling of sea ice associated phytoplankton blooms has been understudied compared to open water ecosystem model applications. This study introduces a general coupled ice-ocean ecosystem model with equations and parameters for 1-D and 3-D applications that is based on 1-D coupled ice-ocean ecosystem model development in the landfast ice in the Chukchi Sea and marginal ice zone of Bering Sea. The biological model includes both pelagic and sea ice algal habitats with 10 compartments: three phytoplankton (pelagic diatom, flagellates and ice algae: D, F, and Ai) , three zooplankton (copepods, large zooplankton, and microzooplankton : ZS, ZL, ZP) , three nutrients ( nitrate + nitrite, ammonium, silicon : NO3 , NH4, Si) and detritus (Det). The coupling of the biological models with physical ocean models is straightforward with just the addition of the advection and diffusion terms to the ecosystem model. The coupling with a multi-category sea ice model requires the same calculation of the sea ice ecosystem model in each ice thickness category and the redistribution between categories caused by both dynamic and thermodynamic forcing as in the physical model. Phytoplankton and ice algal self-shading effect is the sole feedback from the ecosystem model to the physical model.  相似文献   
92.
数字国土     
近日,联合国粮农组织发布的最新研究报告指出,土地退化正在全球众多地区呈现加重和扩大的趋势,由此将造成15亿直接依靠土地生存人口的生计受到影响。随之而来的将是农业产量下降、粮食短缺、人口迁移、生态系统被破坏以及生物多样性丧失等连锁恶性反应。  相似文献   
93.
社会-生态系统适应性治理研究进展与展望   总被引:7,自引:0,他引:7  
宋爽  王帅  傅伯杰  陈海滨  刘焱序  赵文武 《地理学报》2019,74(11):2401-2410
社会—生态系统(SES)由社会子系统、生态子系统及两者的交互作用构成,具有不同于社会系统或生态系统单独具有的结构、功能和复杂特征。社会—生态系统适应性治理旨在通过适应性的社会权利分配与行为决策机制,使社会—生态系统能够在动态条件下可持续地保障人类福祉。适应性治理理论的形成受到“公共池塘资源管理”“韧性”和“治理”3方面理论的影响,并为“转型治理”与“协作治理”提供了建构基础。该理论具有以下3个主要目的:① 理解和应对社会—生态系统多稳态、非线性、不确定性、整体性以及复杂性;② 建立非对抗性的社会结构、权利分配制度以及行为决策体系,匹配社会子系统与自然子系统;③ 通过综合方法管理生态系统,使其可持续提供生态系统服务。因此,面对人类行为主导地表过程的“人类世”,实现适应性治理有助于应对社会—生态系统的复杂性与不确定性。鉴于中国的生态环境正处于迅速变化时期,且中国与世界各国间的相互影响日益复杂,未来研究可重点关注以下3个方面:① 理解耦合系统的多元互动过程,增强适应能力;② 强调社会—生态系统的整体性研究;③ 提高环境变化背景下理解和预测系统动态的能力。  相似文献   
94.
李萌  王传胜  张雪飞 《地理研究》2019,38(10):2447-2457
水源涵养功能重要性是生态保护红线划分工作中重要的评价指标之一。通过对以往生态系统水源涵养功能区划分的指标及其区域导向的系统梳理,在进一步明晰国土空间规划中水源涵养功能生态保护红线区域指向的基础上,按照国土空间规划关于“三区三线”自下而上试划的要求,探讨了水源涵养重要性生态保护红线划分及其评价的改进方法。选取中国典型喀斯特区域六盘水市作为研究案例区,分别用环保部2015版与2017版《生态保护红线划定技术指南》中的模型法、NPP法以及本研究提出的改进方法,对六盘水市水源涵养功能生态保护红线进行了试划。对比三种方法的划定结果可以看出,改进方法因评价数据精度的提高减少了《生态保护红线划定技术指南》方法的区域损失,提高了区域判别的精准性,可望为国土空间规划中生态保护红线的划定提供科学依据。  相似文献   
95.
何旭  杨海娟  王晓雅 《地理研究》2019,38(9):2330-2345
乡村旅游地面临人地交互作用的剧烈变迁,内部要素适应社会-生态系统变化,趋利避害降低脆弱性具有重要现实意义。本文重新界定基于恢复力和脆弱性的农户适应性理论内涵,构建旅游开发适应力指标体系,以西安市和咸阳市17个不同类型的城郊型乡村旅游地为例,评价和分析农户旅游适应效果与空间差异规律,探讨和归纳适应行为与对策模式,建立BP神经网络辨别和揭示适应性影响因素与重要性关系。研究表明:① 西安市和咸阳市农户适应旅游开发综合效果呈现中等偏下水平的偏态分布趋势,分别处于旅游地生命周期快速发展阶段和探索起步阶段。② 乡村旅游地农户适应效果形成“圈层辐射、两翼包络、外围联动”的县域尺度空间分布格局;村域尺度圈层分化现象显著。③ 经营模式划分的旅游乡村农户适应效果股份制模式>“公司+农户”模式>“政府+公司+农户”模式>个体农庄模式>“农户+农户”模式;常年外出务工和农家乐经营是农户主要适应行为选择,季节性务工、本地上班以及农业生产是辅助适应行为选择,且适应行为组合方式表现为旅游专营型、旅游主导型、均衡兼营型、务工主导型和务农主导型五种适应对策模式。④ 旅游发展机会认知、技能培训机会、社会联结度、劳动力总量、政策知晓度、旅游就业人数、收入来源种类、生活主要能源、受教育程度、公共服务设施是农户主要旅游适应性影响因素。据此,提出后续社会-生态整合研究亟需突破方向和适应旅游开发的政策路径。  相似文献   
96.
通过对多源遥感数据在生态系统服务价值(ESV)遥感模型中的尺度效应分析,选择满足最佳空间分辨率和长时间序列的遥感数据,对中原城市群区域2001~2013年的ESV实现了逐年逐像元水平的动态监测。结果表明:该区应用于遥感模型输入数据的最适空间分辨率为30~1 000 m,相对于30 m尺度,其他尺度估算结果的相对偏差均小于0.4%;结合年际动态监测的需求,选择了MODIS数据产品(空间分辨率500 m,时间尺度1 a)作为遥感模型的最佳数据源;研究区ESV总值在研究期内整体上呈显著增长趋势,增速约为8.6亿元/a,但在持续增长过程中经历了3次波动,且表现得越来越剧烈;在空间上,研究区ESV多年均值呈现出明显的不均衡性,表现为从西南向东部递减的趋势。研究表明此方法简单易行,初步实现了区域ESV年际动态监测遥感模型的准业务化运行。  相似文献   
97.
生态系统服务弹性敏感性系数的合理性与决策属性探讨   总被引:1,自引:0,他引:1  
丁振民  姚顺波 《地理科学》2019,39(10):1672-1679
在经济学弹性基本概念的基础之上,采用数学推导的方式重点探讨3种生态系统服务弹性敏感性评价模型的合理性与决策属性。研究结果表明:① Kreuter敏感性系数大小始终为0~1;在极限形式下,生态系统服务价值变率函数与Kreuter敏感性系数具有相同的数学表达式与值域;所以这两种敏感性评价模型把1作为是否敏感的评价标准并不合适。生态系统服务交叉敏感性系数不符合一般意义上的“交叉敏感性”的概念,并且其计算公式不符合弹性的基本定义。② 弹性敏感性计算方式适用于随机变量间的研究,不适用于具有确定性关系的变量;生态系统服务框架下的3种弹性敏感性系数均建立在具有确定性关系的生态系统服务价值计算公式的基础之上,导致其敏感性计算结果缺乏深层次的决策属性。  相似文献   
98.
荒漠生态系统是地球上最大的陆地生态系统,全球四分之一的人口生活在这一区域。清晰地定义荒漠生态系统生态质量,制定反映生态质量优劣的关键监测指标,集成"星–空–地"一体化监测技术、构建综合评价模型可为干旱区生态质量监测、促进区域可持续发展提供技术支撑。荒漠生态质量是指一定时空范围内荒漠生态系统要素、结构和功能的综合特征。该研究通过集成卫星、无人机和地面传感器网络的"星–空–地"一体化监测技术,在区域和站点两个尺度上对荒漠生态系统的生态要素、生物多样性和生态功能进行连续监测,通过标准化生态质量指标数值、厘定其阈值范围,构造判断矩阵建立生态质量综合评价模型,评价荒漠生态系统质量状况。本论文阐明了构建荒漠生态质量动态综合监测技术规范与评价方法的概念框架,为实现我国荒漠生态系统生态质量综合监测、科学诊断和定量评估提供理论基础。  相似文献   
99.
生态质量是指一定时空范围内生态系统要素、结构和功能的综合特征,具体表现为生态系统的状况、生产能力、结构和功能的稳定性、抗干扰和恢复能力。生态系统的质量是我国生态文明建设和生态环境监测的重要内容,多时空尺度观测技术的发展为生态系统质量监测与评价提供了新机遇,但同时也对国家尺度生态要素、生物多样性和生态功能的观测标准与技术规范提出了新的要求。本国家重点研发项目自2017年7月立项以来,围绕国家尺度生态质量监测技术与规范,开展了生态系统网络观测技术规范、台站生态要素监测、区域生物多样性和区域生态功能监测技术与规范的研究,在典型农林草湿地生态系统开展应用示范。项目在生态质量综合监测指标体系构建、生态系统研究网络观测技术、区域生物多样性和区域生态功能监测、基于无人机和机器学习的荒漠植被监测等方面取得了重要进展,促进了生态质量监测技术的发展。我们组织本专辑从不同视野集中系统介绍本项目已取得的生态质量监测技术和评价方法,以期促进生态学及其观测技术的发展。  相似文献   
100.
随着海洋生态系统模型的发展,生态变量增多,众多生物过程参数量值的确定成为制约生态环境模拟的瓶颈问题,生态系统结构区域性要求模型中的生态参数具有区域差异。为探究不同海区的关键参数及参数敏感度的空间差异,本研究在渤、黄海建立了ROMS-CoSiNE物理–生物耦合的高分辨率生态系统模型,并对13种生态参数的敏感度空间分布进行分析。结果表明:南黄海中部与渤海及近岸海域的敏感度差异较大。渤海敏感度最大的参数为决定光合速率的浮游植物P-I曲线初始斜率,其次为浮游动物捕食半饱和常数和浮游动物最大捕食率。而南黄海中部敏感度最大的参数为浮游动物最大捕食率,其次为浮游植物死亡率和浮游植物P-I曲线初始斜率。结合敏感度分布及浮游植物生物量收支得出,渤海水体透明度较南黄海偏低、浮游植物生长光限制较强,是引起浮游植物P-I曲线初始斜率敏感度在渤海高于黄海的主要原因。浮游动物最大捕食率及浮游植物死亡率的敏感度空间差异,受渤、黄海浮游植物生物量差异的影响,与生态系统中的高度非线性特征有关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号