首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   16篇
  国内免费   22篇
测绘学   65篇
大气科学   39篇
地球物理   19篇
地质学   20篇
海洋学   1篇
综合类   3篇
自然地理   16篇
  2023年   1篇
  2021年   1篇
  2020年   10篇
  2019年   11篇
  2018年   4篇
  2017年   10篇
  2016年   9篇
  2015年   11篇
  2014年   10篇
  2013年   15篇
  2012年   5篇
  2011年   6篇
  2010年   4篇
  2009年   4篇
  2008年   8篇
  2007年   2篇
  2006年   6篇
  2005年   6篇
  2004年   1篇
  2003年   3篇
  2002年   4篇
  2001年   4篇
  2000年   5篇
  1999年   3篇
  1998年   7篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1987年   1篇
排序方式: 共有163条查询结果,搜索用时 156 毫秒
11.
ABSTRACT

The overarching goal of this study was to perform a comprehensive meta-analysis of irrigated agricultural Crop Water Productivity (CWP) of the world’s three leading crops: wheat, corn, and rice based on three decades of remote sensing and non-remote sensing-based studies. Overall, CWP data from 148 crop growing study sites (60 wheat, 43 corn, and 45 rice) spread across the world were gathered from published articles spanning 31 different countries. There was overwhelming evidence of a significant increase in CWP with an increase in latitude for predominately northern hemisphere datasets. For example, corn grown in latitude 40–50° had much higher mean CWP (2.45?kg/m³) compared to mean CWP of corn grown in other latitudes such as 30–40° (1.67?kg/m³) or 20–30° (0.94?kg/m³). The same trend existed for wheat and rice as well. For soils, none of the CWP values, for any of the three crops, were statistically different. However, mean CWP in higher latitudes for the same soil was significantly higher than the mean CWP for the same soil in lower latitudes. This applied for all three crops studied. For wheat, the global CWP categories were low (≤0.75?kg/m³), medium (>0.75 to <1.10?kg/m³), and high CWP (≥1.10?kg/m³). For corn the global CWP categories were low (≤1.25?kg/m³), medium (>1.25 to ≤1.75?kg/m³), and high (>1.75?kg/m³). For rice the global CWP categories were low (≤0.70?kg/m³), medium (>0.70 to ≤1.25?kg/m³), and high (>1.25?kg/m³). USA and China are the only two countries that have consistently high CWP for wheat, corn, and rice. Australia and India have medium CWP for wheat and rice. India’s corn, however, has low CWP. Egypt, Turkey, Netherlands, Mexico, and Israel have high CWP for wheat. Romania, Argentina, and Hungary have high CWP for corn, and Philippines has high CWP for rice. All other countries have either low or medium CWP for all three crops. Based on data in this study, the highest consumers of water for crop production also have the most potential for water savings. These countries are USA, India, and China for wheat; USA, China, and Brazil for corn; India, China, and Pakistan for rice. For example, even just a 10% increase in CWP of wheat grown in India can save 6974 billion liters of water. This is equivalent to creating 6974 lakes each of 100?m³ in volume that leads to many benefits such as acting as ‘water banks’ for lean season, recreation, and numerous ecological services. This study establishes the volume of water that can be saved for each crop in each country when there is an increase in CWP by 10%, 20%, and 30%.  相似文献   
12.
Much of the central-western region of Argentina, where San Juan Province is located, experiences arid to semi-arid climatic conditions with low average annual rainfall accompanied by substantial evapotranspiration. Consequently, a viable crop industry depends to a large extent upon irrigation from major river systems. Increasing demand for water in the lower basin of the San Juan River is emphasizing the need for more accurate estimates of water used for irrigation. Since the water demand for a particular crop is very closely related to crop area, monitoring the area of crop under irrigation is considered a proxy for the amount of water used. Landsat 5 imagery for the growing season, field data and aerial photographs were used to evaluate crop area.  相似文献   
13.
金亚秋 《遥感学报》1998,2(1):19-25
国家遥感应用工程技术研究中心NationalEngineeringResearchCenterforGeomatics(NCG)国家遥感应用工程技术研究中心于1996年12月25日由国家科委正式批准组建(国科发计字[1996]603号文件)。中国科学...  相似文献   
14.
星载微波SSM/Ⅰ遥感在中国东北华北农田的辐射特征分析   总被引:2,自引:1,他引:1  
金亚秋 《遥感学报》1998,2(1):19-25
本文研究了星载微波SSM/Ⅰ1996年在中国东北华北平原农田上7个通道辐射亮度温度(TB)的遥感数据,提出用几个通道TB组合的散射指数和极化指数来分析中国平原地区农田的微波辐射特征,及其随生长季节的时间性变化。星载SSM/Ⅰ数据可以监视农作物的生长和平原地区地面湿度的变化。本文还给出了大气和农作物地表矢量辐射传输的数值模拟结果。  相似文献   
15.
国外农情遥感监测系统现状与启示   总被引:19,自引:1,他引:18  
大范围的可靠农情信息对粮食市场及相关政策的制定至关重要,是保障区域及全球粮食安全的重要依据,在全球气候变化、人口增长、土地利用/覆盖变化剧烈的背景下,对这一信息的需求也更加迫切.传统农情信息的获取依赖于庞大的调查队伍和大量的调查工作,信息的获取存在成本高、时效性差和结果受主观影响大的缺点.伴随着近30年遥感技术本身及其在农情信息获取领域能力的提升,一些国家与国际组织建设了各自的农情遥感监测系统,并开展了运行化的监测.对美国、欧盟、FAO、加拿大、巴西、阿根廷、俄罗斯、印度等主要的农情遥感监测系统进展进行了详细的介绍,并通过对这些系统的分析得到一些农情监测系统建设的启示.指出作物种植面积估算、单产预测、长势监测、旱情监测是农情遥感监测中最主要的4个主题.在面积估算方面,各个系统在遥感技术不断发展的同时对地面调查的依赖并没有减少,甚至得到了强化,这与遥感降低地面调查的初衷相违背,导致遥感技术在大范围农情监测中的潜力没有得到充分发挥,在单产预测方面,需要发展独立的遥感预测方法.提升遥感的作用是未来一段时间内农情遥感监测系统建设的主要方向.  相似文献   
16.
"全球农情遥感速报系统(CropWatch)"新进展   总被引:5,自引:0,他引:5  
目前由中国科学院遥感应用研究所建设和运行的"全球农情遥感速报系统",是世界上开展全球尺度农情遥感业务监测的主要运行系统之一,可以在中国和全球尺度提供作物长势、单产、种植面积、产量和旱情等农情信息.自1998年建设至今,已经发展成为一个独立运行、监测内容全面、技术先进、监测结果可靠,并具有快速响应能力的系统.2004年,<遥感学报>(第8卷第6期)对该系统的主要技术方法进行了系统介绍.2005-2009年,通过对CropWatch的不断完善,提高了系统的独立性和运行效率,并在2008年春季雪灾、汶川地震、2009年冬小麦种植区春季干旱、2010年西南大旱等关键时期发挥了重要作用.详细介绍了2005-2009年间在系统化建设、监测的独立性和系统的应用推广等方面的进展,并对系统在"十二五"期间的发展重点进行了展望.  相似文献   
17.
On farm bio-resource recycling has been given greater emphasis with the introduction of conservation agriculture specifically withclimate change scenarios in the mid-hills of the north-west Himalaya region(NWHR). Under this changing scenario, elevation, slope aspect and integrated nutrient management(INM) may affect significantly soil quality and crop productivity. A study was conducted during 2009-2010 to 2010-2011 at the Ashti watershed of NWHR in a rainfed condition to examine the influence of elevation, slope aspect and integrated nutrient management(INM) on soil resource and crop productivity. Two years of farm demonstration trials indicated that crop productivity and soil quality is significantly affected by elevation, slope aspect and INM. Results showed that wheat equivalent yield(WEY) of improved technology increased crop productivity by -20%-37% compared to the conventional system. Intercropping of maize with cowpea and soybean enhanced yield by another 8%-17%. North aspect and higher elevation increased crop productivity by 15%-25% compared to south aspect and low elevation(except paddy). Intercropping of maize with cowpea and soybean enhanced yield by another 8%-15%. Irrespective of slope, elevation and cropping system, the WEY increased by -30% in this region due to INMtechnology. The influence of elevation, slope aspect and INM significantly affected soil resources(SQI) and soil carbon change(SCC). SCC is significantly correlated with SQI for conventional(R2 = 0.65*), INM technology(R2 = 0.81*) and for both technologies(R2 = 0.73*). It is recommended that at higher elevation.(except for paddy soils) with a north facing slope, INM is recommended for higher crop productivity; conservation of soil resources is recommended for the mid hills of NWHR; and single values of SCC are appropriate as a SQI for this region.  相似文献   
18.
This paper presents a technique developed for the retrieval of the orientation of crop rows, over anthropic lands dedicated to agriculture in order to further improve estimate of crop production and soil erosion management. Five crop types are considered: wheat, barley, rapeseed, sunflower, corn and hemp. The study is part of the multi-sensor crop-monitoring experiment, conducted in 2010 throughout the agricultural season (MCM’10) over an area located in southwestern France, near Toulouse. The proposed methodology is based on the use of satellite images acquired by Formosat-2, at high spatial resolution in panchromatic and multispectral modes (with spatial resolution of 2 and 8 m, respectively). Orientations are derived and evaluated for each image and for each plot, using directional spatial filters (45° and 135°) and mathematical morphology algorithms. “Single-date” and “multi-temporal” approaches are considered. The single-date analyses confirm the good performances of the proposed method, but emphasize the limitation of the approach for estimating the crop row orientation over the whole landscape with only one date. The multi-date analyses allow (1) determining the most suitable agricultural period for the detection of the row orientations, and (2) extending the estimation to the entire footprint of the study area. For the winter crops (wheat, barley and rapeseed), best results are obtained with images acquired just after harvest, when surfaces are covered by stubbles or during the period of deep tillage (0.27 > R2 > 0.99 and 7.15° > RMSE > 43.02°). For the summer crops (sunflower, corn and hemp), results are strongly crop and date dependents (0 > R2 > 0.96, 10.22° > RMSE > 80°), with a well-marked impact of flowering, irrigation equipment and/or maximum crop development. Last, the extent of the method to the whole studied zone allows mapping 90% of the crop row orientations (more than 45,000 ha) with an error inferior to 40°, associated to a confidence index ranging from 1 to 5 for each agricultural plot.  相似文献   
19.
Accurate representation of leaf area index (LAI) from high resolution satellite observations is obligatory for various modelling exercises and predicting the precise farm productivity. Present study compared the two retrieval approach based on canopy radiative transfer (CRT) method and empirical method using four vegetation indices (VI) (e.g. NDVI, NDWI, RVI and GNDVI) to estimate the wheat LAI. Reflectance observations available at very high (56 m) spatial resolution from Advanced Wide-Field Sensor (AWiFS) sensor onboard Indian Remote Sensing (IRS) P6, Resourcesat-1 satellite was used in this study. This study was performed over two different wheat growing regions, situated in different agro-climatic settings/environments: Trans-Gangetic Plain Region (TGPR) and Central Plateau and Hill Region (CPHR). Forward simulation of canopy reflectances in four AWiFS bands viz. green (0.52–0.59 μm), red (0.62–0.68 μm), NIR (0.77–0.86 μm) and SWIR (1.55–1.70 μm) were carried out to generate the look up table (LUT) using CRT model PROSAIL from all combinations of canopy intrinsic variables. An inversion technique based on minimization of cost function was used to retrieve LAI from LUT and observed AWiFS surface reflectances. Two consecutive wheat growing seasons (November 2005–March 2006 and November 2006–March 2007) datasets were used in this study. The empirical models were developed from first season data and second growing season data used for validation. Among all the models, LAI-NDVI empirical model showed the least RMSE (root mean square error) of 0.54 and 0.51 in both agro-climatic regions respectively. The comparison of PROSAIL retrieved LAI with in situ measurements of 2006–2007 over the two agro-climatic regions produced substantially less RMSE of 0.34 and 0.41 having more R2 of 0.91 and 0.95 for TGPR and CPHR respectively in comparison to empirical models. Moreover, CRT retrieved LAI had less value of errors in all the LAI classes contrary to empirical estimates. The PROSAIL based retrieval has potential for operational implementation to determine the regional crop LAI and can be extendible to other regions after rigorous validation exercise.  相似文献   
20.
冯辉 《城市地质》2015,(2):27-30
北京延庆葡萄产地北侧山区出露大面积花岗岩。岩浆活动频繁,构造发育,特殊地质条件造成土壤存在明显的高氟异常,全氟、水溶氟含量高,部分地下水氟化物含量超过相关标准,是导致当地居民因饮用地下水而患有氟中毒地方病的主要原因。尽管农作物含氟符合相关标准,但高氟地质环境对农作物的含氟量仍具有富集趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号