首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   2篇
  国内免费   11篇
测绘学   1篇
大气科学   4篇
地球物理   7篇
地质学   44篇
海洋学   5篇
天文学   1篇
综合类   2篇
自然地理   2篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   4篇
  2011年   1篇
  2010年   5篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   5篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
61.
We mapped the geometry of 13 silicic dikes at Summer Coon, an eroded Oligocene stratovolcano in southern Colorado, to investigate various characteristics of radial dike emplacement in composite volcanoes. Exposed dikes are up to about 7 km in length and have numerous offset segments along their upper peripheries. Surprisingly, most dikes at Summer Coon increase in thickness with distance from the center of the volcano. Magma pressure in a dike is expected to lessen away from the pressurized source region, which would encourage a blade-like dike to decrease in thickness with distance from the center of the volcano. We attribute the observed thickness pattern as evidence of a driving pressure gradient, which is caused by decreasing host rock shear modulus and horizontal stress, both due to decreasing emplacement depths beneath the sloping flanks of the volcano. Based on data from Summer Coon, we propose that radial dikes originate at depth below the summit of a host volcano and follow steeply inclined paths towards the surface. Near the interface between volcanic cone and basement, which may represent a neutral buoyancy surface or stress barrier, magma is transported subhorizontally and radially away from the center of the volcano in blade-like dikes. The dikes thicken with increasing radial distance, and offset segments and fingers form along the upper peripheries of the intrusions. Eruptions may occur anywhere along the length of the dikes, but the erupted volume will generally be greater for dike-fed eruptions far from the center of the host volcano owing to the increase in driving pressure with distance from the source. Observed eruptive volumes, vent locations, and vent-area intrusions from inferred post-glacial dike-fed eruptions at Mount Adams, Washington, USA, support the proposed model. Hazards associated with radial dike emplacement are therefore greater for longer dikes that propagate to the outer flanks of a volcano.  相似文献   
62.
The mafic-ultramafic Chimbadzi Hill intrusion in the NW of the Zimbabwe craton is a dyke with inward-dipping margins comprising magnetite peridotite, troctolite and magnetite melatroctolite. The magnetite peridotite is composed of about equal amounts of V- and Ti-bearing magnetite and olivine (Fo60). The troctolite is composed of about 50% olivine (Fo50-54), 40% plagioclase (An53-58), 7% clinopyroxene and minor apatite and magnetite with ilmenite lamellae. Geochemical trends suggest that the Chimbadzi Hill Intrusion formed by fractional crystallisation from a single initial magma. However, the more primitive magnetite peridotite overlies the more evolved troctolite in the intrusion. This ‘apparent’ inverted stratigraphy may be due to emptying of a fractionated magma chamber from the top, or to floor subsidence during intrusion.U–Pb dating on baddeleyite reveals that the age of the Chimbadzi Hill Intrusion is 2262 ± 2 Ma. This age does not correspond to any known tectono-thermal event in the Zimbabwe Craton or adjacent metamorphic belts. It is 300 Ma younger than the late Archean Great Dyke, and 230 Ma older than other Paleoproterozoic events in and around the craton. Therefore, it may represent a so far undocumented very early Proterozoic igneous event in the Zimbabwe Craton. The intrusion represents a vanadium resource for Zimbabwe, with titanium potentially being mined as by-product.  相似文献   
63.
The Bjerkreim-Sokndal layered intrusion (BKSK) consists of a > 7000-m-thick Layered Series comprising anorthosites, leuconorites, troctolites, norites, gabbronorites and jotunites (hypersthene monzodiorites), overlain by an unknown thickness of massive, evolved rocks: mangerites (hypersthene monzonites; MG), quartz mangerites (QMG) and charnockites (CH). The Layered Series is subdivided into six megacyclic units that represent the crystallisation products of successive major influxes of magma. We have studied a ca. 2000-m-thick section that straddles the sequence from the uppermost part of the Layered Series to the QMG in the northern part of the intrusion. Mineral compositions in 37 samples change continuously in the lower part of the sequence up to the middle of the MG-unit (plagioclase An37-18; olivine Fo40-7; Ca-poor pyroxene Mg#57-15; Ca-rich pyroxene Mg#65-21). Above this compositions are essentially constant in the upper part of the MG-unit and in the QMG (An21-13; Fo6-4; Mg#opx17-13; Mg#cpx25-20). The amount of interstitial quartz and the amount of normative orthoclase, however, both increase systematically upwards through the QMG-unit, implying that these rocks are cumulates. There is no evidence of a compositional break in the MG-QMG sequence that could reflect influx of relatively primitive magma.

Two types of QMG/CH are known in the uppermost part of BKSK. Olivine-bearing types are comagmatic with the underlying Layered Series; the studied stratigraphic sequence belongs to this suite. Two-pyroxene QMG and amphibole CH define a separate compositional lineage related to jotunites. An intrusive unit of dominantly two-pyroxene QMG is discordant to the olivine-bearing jotunite-MG-QMG sequence near Rapstad, confirming the presence of two compositionally distinct suites of QMG and related lithologies in the upper part of BKSK.

A xenolith-rich unit near the olivine-bearing MG-QMG boundary represents a major collapse of the roof of the magma chamber during the final stages of crystallisation.  相似文献   

64.
Excessive sedimentation in mountain stream ecosystems is a critical environmental problem due to the clogging of streambeds by sediment particles within the hyporheic zone,with detrimental effects on fish spawning habitat.In this research,the effects of an array of boulders in regulating the intrusion of incoming sand within a gravel substrate were evaluated by performing detailed experiments in a laboratory flume.A unique experimental setup and two different sampling techniques were utilized for measuring the infiltrated sand within the gravel bed under two bed shear stress conditions(moderate vs.high).For comparison purposes,experiments were performed without and with the presence of partially submerged to the flow(protruding) boulders,which is typical for the average flow conditions found in mountain streams.Results indicated that sand infiltrated primarily in the upper part of the gravel bed creating a surface seal which hindered the penetration of sand particles deeper into the bed.An exponential decrease of the amount of the infiltrated sand within the hyporheic zone was observed in all experiments regardless of the presence of boulders.However,the presence of boulders promoted sediment intrusion of sand particles especially for the moderate applied bed shear stress condition,since the total amount of the infiltrated sand was found to be on average 44% greater whenboulders were present.The findings from this study can provide additional insight regarding the role of boulders on promoting downwelling of flow and sediment within the gravel substrate with potential effects on fish habitat.  相似文献   
65.
A new method of interpretation of the QC hysteresis (discharge–salinity) during high water is proposed using the data recorded on coastal brackish karstic springs with salinity inversely proportional to the discharge. The method, based on the QmerCT (seawater discharge–salinity) hysteresis, identifies the effect of the hydrodynamic changes on the flow and transport. Three phenomena are characterized: the emptying of the karstic conduit, the dilution by freshwater and the control of the seawater intrusion in the conduit by the hydraulic head variations. To cite this article: B. Arfib et al., C. R. Geoscience 338 (2006).  相似文献   
66.
The Fongen–Hyllingen Intrusion (FHI) is considered to have crystallised from stratified magma residing in a bowl-shaped magma chamber. Seven olivine-rich units, representing the most primitive cumulates in the central part of the intrusion, are associated with compositional reversals and are interpreted as having formed at the lowest part of the magma chamber floor. Based on phase-relationships, the crystallisation order is explained in terms of magma mixing and fractional crystallisation. Repeated influxes of small volumes of dense, primitive magma at the base of the chamber had a major impact on the crystallising assemblage on the local floor and a decreasing effect towards the flanks of the chamber. This was due to the small volume of replenishing magma, the geometry of the chamber and the consequent restriction of magma mixing to the deepest part of the chamber where the new magma was emplaced. It is estimated that the chamber floor sloped as little as 1–2°, but this was sufficient to give widely different cumulate sequences near the bottom of the chamber and on the flanks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号