首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32478篇
  免费   6295篇
  国内免费   8493篇
测绘学   2367篇
大气科学   8484篇
地球物理   7235篇
地质学   13641篇
海洋学   4804篇
天文学   5822篇
综合类   2050篇
自然地理   2863篇
  2024年   131篇
  2023年   373篇
  2022年   931篇
  2021年   1093篇
  2020年   1214篇
  2019年   1444篇
  2018年   1221篇
  2017年   1283篇
  2016年   1313篇
  2015年   1551篇
  2014年   2108篇
  2013年   2255篇
  2012年   2274篇
  2011年   2445篇
  2010年   2059篇
  2009年   2766篇
  2008年   2544篇
  2007年   2779篇
  2006年   2427篇
  2005年   2033篇
  2004年   1809篇
  2003年   1571篇
  2002年   1338篇
  2001年   1151篇
  2000年   1101篇
  1999年   1049篇
  1998年   903篇
  1997年   687篇
  1996年   618篇
  1995年   516篇
  1994年   511篇
  1993年   428篇
  1992年   277篇
  1991年   215篇
  1990年   177篇
  1989年   145篇
  1988年   121篇
  1987年   71篇
  1986年   49篇
  1985年   61篇
  1984年   42篇
  1983年   21篇
  1982年   29篇
  1981年   21篇
  1980年   26篇
  1979年   14篇
  1978年   15篇
  1977年   29篇
  1976年   5篇
  1954年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
2D numerical modelling of impact cratering has been utilized to quantify an important depth-diameter relationship for different crater morphologies, simple and complex. It is generally accepted that the final crater shape is the result of a gravity-driven collapse of the transient crater, which is formed immediately after the impact. Numerical models allow a quantification of the formation of simple craters, which are bowl-shaped depressions with a lens of rock debris inside, and complex craters, which are characterized by a structural uplift. The computation of the cratering process starts with the first contact of the impactor and the planetary surface and ends with the morphology of the final crater. Using different rheological models for the sub-crater rocks, we quantify the influence on crater mechanics. To explain the formation of complex craters in accordance to the threshold diameter between simple and complex craters, we utilize the Acoustic Fluidization model. We carried out a series of simulations over a broad parameter range with the goal to fit the observed depth/diameter relationships as well as the observed threshold diameters on the Moon, Earth and Venus.  相似文献   
142.
143.
144.
145.
146.
147.
We analyse the non-linear, three-dimensional response of a gaseous, viscous protoplanetary disc to the presence of a planet of mass ranging from 1 Earth mass (1 M) to 1 Jupiter mass (1 MJ) by using the zeus hydrodynamics code. We determine the gas flow pattern, and the accretion and migration rates of the planet. The planet is assumed to be in a fixed circular orbit about the central star. It is also assumed to be able to accrete gas without expansion on the scale of its Roche radius. Only planets with masses   M p≳ 0.1 MJ  produce significant perturbations in the surface density of the disc. The flow within the Roche lobe of the planet is fully three-dimensional. Gas streams generally enter the Roche lobe close to the disc mid-plane, but produce much weaker shocks than the streams in two-dimensional models. The streams supply material to a circumplanetary disc that rotates in the same sense as the orbit of the planet. Much of the mass supply to the circumplanetary disc comes from non-coplanar flow. The accretion rate peaks with a planet mass of approximately 0.1 MJ and is highly efficient, occurring at the local viscous rate. The migration time-scales for planets of mass less than 0.1 MJ, based on torques from disc material outside the Roche lobes of the planets, are in excellent agreement with the linear theory of type I (non-gap) migration for three-dimensional discs. The transition from type I to type II (gap) migration is smooth, with changes in migration times of about a factor of 2. Starting with a core which can undergo runaway growth, a planet can gain up to a few MJ with little migration. Planets with final masses of the order of 10 MJ would undergo large migration, which makes formation and survival difficult.  相似文献   
148.
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号