首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   18篇
  国内免费   48篇
大气科学   81篇
地球物理   2篇
海洋学   6篇
综合类   2篇
自然地理   1篇
  2024年   1篇
  2021年   3篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   2篇
  2004年   5篇
  2003年   7篇
  2001年   3篇
  2000年   4篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
排序方式: 共有92条查询结果,搜索用时 78 毫秒
71.
副热带高压研究进展及展望   总被引:49,自引:7,他引:42  
介绍了国家自然科学基金委员会九五重点项目"副热带高压形成和变异的机理"的研究成果.该项目的研究纠正了对副热带高压成因的若干传统认识,揭示了副热带高压脊线年际变化的新事实,发展了脊线这一东西风交界面的动力模型,建立了"全型涡度方程"、"热力适应"理论及"两级热力适应"模式,并通过模拟和资料诊断研究了各副热带高压单体的形成机制及其季节和年际变化,在西太平洋副热带高压变化的规律和机制的研究中得到了新的认识.  相似文献   
72.
In this paper, characteristics of precipitating clouds in a thermal convective system (TCS) occurred in the southeastern mainland of China at 15:00 BT (Beijing time) on August 2, 2003 in the central western subtropical Pacific anticyclone (WSPA) is studied by using TRMM tropical rainfallmeasuring mission PR (precipitution radar) and IR Infrared radiation measurements. The precipitating cloud structures in both horizontal and vertical, relationship among storm top, cloud top, and surface rain rate are particularly analyzed. Results show that a strong ascending air at 500 hPa and a strong convergence of moisture flux at 850 hPa in the central WSPA supply necessary conditions both in dynamics and moisture for the happening of the TCS precipitation. The TRMM PR observation shows that the horizontal scale of the most TCS precipitating clouds is about 30-40 km, their averaged vertical scale is above 10 km, and the maximum reaches 17.5 km. The maximum rain rate near surface of those TCS clouds is beyond 50 mm h-1. The mean rain profile of the TCS clouds shows that its maximum rain rate at 5 km altitude is 1 km lower than the estimated freezing level of the environment. Compared with the mesoscale convective system (MCS) of "98.7.20", both systems have the same altitude of the maximum rain rate displayed from both mean rain profiles, but the TCS is much deeper than the MCS. From the altitude of the maximum rain rate to near surface, profiles show that rain rate reducing in the TCS is faster than that in the MCS, which implies a strong droplet evaporation process occurring in the TCS. Relationship among cloud top, storm top, and surface rain rate analysis indicates a large variation of cloud top when storm top is lower. On the contrary, the higher the storm top, the more consistent both cloud top and storm top. And, the larger the surface rain rate, the higher and more consistent for both cloud top and storm top. At the end, results expose that area fractions of non-precipitating clouds and clear sky are 86% and 2%, respectively. The area fraction of precipitating clouds is only about 1/8 that of non-precipitating clouds.  相似文献   
73.
本文分析了1980年7月17~28日逐日200hPa辐散环流的变化过程。讨论了辐散环流变化与西太平洋副热带高压、台风活跃与中断、南海赤道反气旋形成与消失之间的关系,揭示了一些有意义的事实  相似文献   
74.
This study identifies the atmospheric circulation features that are favorable for the occurrence of low-level turbulence at Hong Kong International Airport [below 1600 feet(around 500 m)]. By using LIDAR data at the airport, turbulence and nonturbulence cases are selected. It is found that the occurrence of turbulence is significantly related to the strength of the southerly wind at 850 h Pa over the South China coast. On the other hand, the east–west wind at this height demonstrates a weak relation to the occurrence. This suggests that turbulence is generated by flow passing Lantau Island from the south. The southerly wind also transports moisture from the South China Sea to Hong Kong, reducing local stability. This is favorable for the development of strong turbulence. It is also noted that the strong southerly wind during the occurrence of low-level turbulence is contributed by an anomalous zonal gradient of geopotential in the lower troposphere over the South China Sea. This gradient is caused by the combination of variations at different timescales. These are the passage of synoptic extratropical cyclones and anticyclones and the intraseasonal variation in the western North Pacific subtropical high. The seasonal variation in geopotential east of the Tibetan Plateau leads to a seasonal change in meridional wind, by which the frequency of low-level turbulence is maximized in spring and minimized in autumn.  相似文献   
75.
In summer 2020, extreme rainfall occurred throughout the Yangtze River basin, Huaihe River basin, and southern Yellow River basin, which are defined here as the central China (CC) region. However, only a weak central Pacific (CP) El Ni?o happened during winter 2019/20, so the correlations between the El Ni?o–Southern Oscillation (ENSO) indices and ENSO-induced circulation anomalies were insufficient to explain this extreme precipitation event. In this study, reanalysis data and numerical experiments are employed to identify and verify the primary ENSO-related factors that cause this extreme rainfall event. During summer 2020, unusually strong anomalous southwesterlies on the northwest side of an extremely strong Northwest Pacific anticyclone anomaly (NWPAC) contributed excess moisture and convective instability to the CC region, and thus, triggered extreme precipitation in this area. The tropical Indian Ocean (TIO) has warmed in recent decades, and consequently, intensified TIO basinwide warming appears after a weak El Ni?o, which excites an extremely strong NWPAC via the pathway of the Indo-western Pacific Ocean capacitor (IPOC) effect. Additionally, the ENSO event of 2019/20 should be treated as a fast-decaying CP El Ni?o rather than a general CP El Ni?o, so that the circulation and precipitation anomalies in summer 2020 can be better understood. Last, the increasing trend of tropospheric temperature and moisture content in the CC region after 2000 is also conducive to producing heavy precipitation.  相似文献   
76.
利用逐日NCEP/NCAR再分析资料,对1998年7月二度梅期间南亚高压影响西太平洋副热带高压短期变异的过程和作用机制进行了诊断。结果发现,梅雨间歇期副高单体异常向西、向北发展期间,高层南亚高压曾离开高原上空东移(伸)至120°E以东;南亚高压返回高原上空时,中层副热带高压减弱南落,两者有相向然后相背移动的趋势。进一步研究这两个高压系统密切关联的原因又发现,南亚高压通过两种作用机制影响中层副高的短期变异:南亚高压在东移过程中,高空负涡度平流动力强迫的下沉运动在中层副高区域产生辐散,从动力上影响副高内的负涡度发展;另一方面,强烈下沉运动伴随的绝热加热效应又有利于纬向温度梯度维持,有利于南北风发展,从热力上间接影响西太副高的发展。最后,利用R42L9/LASG大气环流模式进行敏感性数值试验,通过改变高空南亚高压东移产生的负涡度效应,发现中层副热带高压区确有强迫产生的动力辐散和绝热加热出现,并对应副高的异常加强,成功地验证了诊断所揭示的1998年夏季副高短期变异过程的两种机制。  相似文献   
77.
柳伊  范磊 《山东气象》2019,39(3):36-42
通过资料分析与数值模拟研究了西北太平洋低空环流特征及其与海面温度(SST)异常关系的季节性差异,得到如下结论:1)西北太平洋低空环流的空间尺度和位置在春季和夏季存在明显差异,从春季到夏季,异常环流范围缩小且中心位置向西北偏移;2)西北太平洋低空环流与西北太平洋局地海温的相互作用存在季节差异,春季西北太平洋冷海温与上空反气旋异常之间存在相互作用,而夏季则以大气影响海洋为主,异常的反气旋/气旋可以加热/冷却其下垫面的海温,大气超前3~4 d影响海洋;3)夏季异常反气旋环流(WNPAC)的维持主要来自非局地海温异常(北印度洋暖海温与中太平洋冷海温异常)的强迫,这两个海区对WNPAC的影响也存在季节性差异,北印度洋的影响主要体现在晚春至盛夏,而中太平洋则主要在晚夏发挥作用。  相似文献   
78.
Record-breaking heavy and persistent precipitation occurred over the Yangtze River Valley (YRV) in June-July (JJ) 2020. An observational data analysis has indicated that the strong and persistent rainfall arose from the confluence of southerly wind anomalies to the south associated with an extremely strong anomalous anticyclone over the western North Pacific (WNPAC) and northeasterly anomalies to the north associated with a high-pressure anomaly over Northeast Asia. A further observational and modeling study has shown that the extremely strong WNPAC was caused by both La Ni?a-like SST anomaly (SSTA) forcing in the equatorial Pacific and warm SSTA forcing in the tropical Indian Ocean (IO). Different from conventional central Pacific (CP) El Ni?os that decay slowly, a CP El Ni?o in early 2020 decayed quickly and became a La Ni?a by early summer. This quick transition had a critical impact on the WNPAC. Meanwhile, an unusually large area of SST warming occurred in the tropical IO because a moderate interannual SSTA over the IO associated with the CP El Ni?o was superposed by an interdecadal/long-term trend component. Numerical sensitivity experiments have demonstrated that both the heating anomaly in the IO and the heating anomaly in the tropical Pacific contributed to the formation and maintenance of the WNPAC. The persistent high-pressure anomaly in Northeast Asia was part of a stationary Rossby wave train in the midlatitudes, driven by combined heating anomalies over India, the tropical eastern Pacific, and the tropical Atlantic.  相似文献   
79.
A storm track is a region in which synoptic eddy activities are statistically most prevalent and intense. At daily weather charts, it roughly corresponds to the mean trajectories of cyclones and anticyclones. In this paper, the recent QuikSCAT (Quick Scatterometer) satellite sea winds data with a 0.5°×0.5° horizontal resolution, and the NCEP (National Centers for Environmental Prediction) 10-m height Gaussian grid wind data and pressure-level reanalysis data, are employed to document the spatial structure of the North Pacific storm track in winter (January) and summer (July) from 1999 to 2005. The results show that in winter the North Pacific storm track is stronger, and is located in lower latitudes with a distinct zonal distribution. In summer, it is weaker, and is located in higher latitudes. Based on the horizontal distributions of geopotential height variance at various levels, three-dimensional schematic diagrams of the North Pacific storm track in winter and summer are extracted and presented. Analyses of the QuikSCAT wind data indicate that this dataset can depict the low-level storm track features in detail. The double storm tracks over the Southern Oceans found by Nakamura and Shimpo are confirmed. More significantly, two new pairs of low-level storm tracks over the North Pacific and the North Atlantic are identified by using this high-resolution dataset. The pair over the North Pacific is focused in this paper, and is named as the "subtropical storm track" and the "subpolar storm track", respectively. Moreover, statistical analyses of cyclone and anticyclone trajectories in the winters of 1999 to 2005 reveal as well the existence of the low-level double storm tracks over the North Pacific.  相似文献   
80.
采用1957—2002年850 hPa风场的ERA-40再分析资料,分析得知西北太平洋低层环流存在着明显的年际变化。这种年际变化表征了西北太平洋夏季风的年际变化,并且会影响东亚夏季风的变化。用Hadley海表面气压以及海表温度资料诊断得到,这种夏季西北太平洋反气旋异常(WPAC,northwest Pacific anomalous anticyclone)的年际变化与北印度洋同期海表温度变化存在很好的相关。用偏相关方法消除N ino3.4信号的同期线性影响,这种同期相关更加显著,而西南热带印度洋的同期海温与WPAC的相关并不显著。数值试验结果表明,北印度洋存在正海温异常时,北印度洋降水偏多,同时伴随着西北太平洋反气旋异常。当只有西南热带印度洋有正海温异常时,北印度洋会出现东风异常且降水减少,而西北太平洋有弱的气旋异常。数值模式结果与观测数据的诊断结果相吻合,说明当夏季北印度洋海表温度为正异常时,可能会产生西北太平洋反气旋异常。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号