首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1192篇
  免费   477篇
  国内免费   1012篇
测绘学   19篇
大气科学   2247篇
地球物理   60篇
地质学   138篇
海洋学   61篇
天文学   6篇
综合类   53篇
自然地理   97篇
  2024年   19篇
  2023年   58篇
  2022年   77篇
  2021年   100篇
  2020年   98篇
  2019年   116篇
  2018年   99篇
  2017年   85篇
  2016年   80篇
  2015年   110篇
  2014年   151篇
  2013年   143篇
  2012年   163篇
  2011年   144篇
  2010年   108篇
  2009年   119篇
  2008年   114篇
  2007年   157篇
  2006年   127篇
  2005年   110篇
  2004年   78篇
  2003年   71篇
  2002年   47篇
  2001年   60篇
  2000年   36篇
  1999年   37篇
  1998年   33篇
  1997年   32篇
  1996年   19篇
  1995年   28篇
  1994年   22篇
  1993年   14篇
  1992年   10篇
  1991年   6篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
排序方式: 共有2681条查询结果,搜索用时 187 毫秒
51.
新疆西南部一次局地对流性暴雨成因分析   总被引:1,自引:0,他引:1  
利用常规地面和探空气象资料、NCEP逐6h1°×1°的再分析资料和(CINRAD-CC)多普勒雷达探测资料,对2012年7月19日新疆阿图什罕见的短时对流性暴雨形成原因进行了诊断分析。结果表明:此次天气是在南疆低涡有利的环流背景下、低层中尺度低涡促进上升运动及触发不稳定能量释放产生的;冷空气的入侵是造成对流扰动发展的重要原因,同时地面小尺度系统对触发不稳定能量释放也有一定的作用;涡散场的配置、垂直速度、低层偏东急流和强不稳定能量满足了对流发生的基本条件,而较强的垂直风切变则使风暴明显增强;从喀什探空订正图来看,修正后的探空资料中各要素对开展强对流潜势预报有很好的指示意义,有待进一步总结验证;对多普勒雷达资料的分析表明,此次强降水具有强回波、强的垂直风切变、大的垂直液态水含量和较高回波顶高等,与强对流天气的发生发展及落区有较好的对应关系。  相似文献   
52.
海风雷暴的观测分析和数值模拟研究进展   总被引:4,自引:0,他引:4  
沿海地区经济相对繁荣,城市化水平较高,对天气和气候的依赖性强,突发性强对流天气所造成的灾害也会更加严重;同时沿海地区的强对流天气又与海风环流密切相关,因此沿海地区海风雷暴的研究受到了日益广泛的关注,成为了气象学和大气科学中的重要研究对象。在过去的半个多世纪中,海风雷暴的观测和模拟研究取得了大量的研究成果。本文通过对这些研究工作进行回顾和总结,系统地分析了国内外的研究现状,重点讨论了海风雷暴的结构和特征、发展演变过程、触发机制及其预报预警。最后对海风雷暴未来的研究方向进行了探讨,提出了一些有待于研究或需深入研究的问题,以利于今后更好的开展有关海风雷暴的工作,加深对其发生发展规律的认识,提高预报预警水平。  相似文献   
53.
三峡库区四方碑滑坡稳定性与变形趋势预测   总被引:1,自引:0,他引:1  
三峡水库建成后,库水位周期性涨落和暴雨产生的渗流作用导致大量古滑坡的复活或新滑坡的发生。以库区近水平层状结构的四方碑滑坡为例,依据库水位实际调动,将水位从175 m至145 m不同降速与50年一遇暴雨进行工况组合,计算4种工况下滑坡的稳定性及破坏概率。然后采用Geo-studio软件的Sigma模块对滑坡进行变形模拟,运用R/S分析方法判断滑坡的变形持续性,并结合野外调查情况,综合评价分析四方碑滑坡的稳定性。结果表明:滑坡在各工况下整体均处于基本稳定状态,具有低危险性;变形模拟结果显示滑坡前缘位移最大,与野外调查情况一致;各监测点Hurst指数均介于0.5~1,表明时间序列具有正持续性,在研究的时间限度内滑坡的局部破坏增强,应在汛期加强对滑坡前缘的巡查和预警。  相似文献   
54.
选取2016—2018年每年4—9月份RPG-HATPRO型42通道微波辐射计观测的不稳定指数参数(K、SI、CAPE、LI)及水汽参数(IWV、LWP),研究得出各参数触发雷雨大风、短时强降水的阈值条件为K>37℃、SI<-1℃、IWV>60 kg/m~2、LWP>400 g/m~2,而LI、CAPE无法对3种天气类型进行区分。利用费舍判别分析方法,将不稳定指数参数及水汽参数作为预报因子,建立预报方程并进行检验,结果表明:二级判别方程预测对流天气的准确率为76%,可以作为预报对流天气的辅助工具;多级判别方程不能很好地区分3种天气类型,但将其作为修正后的二级判别方程使用,能提高对流天气的测中概率。  相似文献   
55.
2021年10月3—6日,我国北方地区经历了历史罕见的持续性极端强降水过程,暴雨中心稳定维持在陕西中部、山西、京津冀、辽宁等地南部和山东北部,给上述地区造成了巨大的经济损失和严重的人员伤亡。基于台站观测降水、NCEP/NCAR和ERA5再分析资料诊断了本次降水过程的极端性。结果表明,本次暴雨过程无论是降水强度、持续时长还是经向水汽输送均表现出典型北方夏季暴雨和大气环流配置特征。上述五省二市区域平均的过程累计雨量强度远远超过秋季其他暴雨个例,即使在夏季也位列第二。本次过程的极端性与强降水中心稳定在上述地区密切相关。上述五省二市区域平均降水连续4日均超过15 mm,这在秋季历史上从未出现过。除过程的极端性强外,9月山西等地降水异常偏多对10月初秋涝也起到了叠加作用。本次秋涝对应的大气环流呈现出典型的北方夏季主雨季环流型,表现为西太平洋副热带高压(副高)偏西偏北,副高西侧的经向水汽输送异常强盛,同时10月4—6日北方地区发生一次强冷空气过程,冷暖气流交汇在上述地区。水汽收支计算表明,本次过程的经向水汽输送强度为秋季历史之最,甚至超过了盛夏时期北方大部分暴雨过程水汽输送强度。上述分析结果表明,即使在仲秋时节亦可产生有利于北方极端持续暴雨的环流形势和水汽输送,并导致秋涝发生。  相似文献   
56.
利用ARCGIS对天津市西青区的高精度地理信息数据、排水设施和排水方式进行预处理,以西青区下垫面和明渠河道的水流运动为模拟对象,建立天津市西青区中小河流暴雨洪涝仿真模型。以区内14条二级河道的水位变化作为模型的动态侧边界条件,针对2016年7月20日的大暴雨过程,设计了4个模拟方案,对河道高水位及暴雨造成的洪涝淹没过程进行评估,并将模拟结果与实际调查内涝灾情进行对比,结果表明,模型可以较客观地反映暴雨和河道水位变化对城镇造成的内涝灾害情况。  相似文献   
57.
利用全国2287个气象观测站1961—2016年逐日降水资料,基于对暴雨区进行连续追踪的思路,采用暴雨相邻站点数和暴雨区中心距离确定了中国区域性暴雨过程的客观识别方法;根据区域性暴雨过程的平均强度、持续时间和平均范围构建了区域性暴雨过程的综合强度评估模型。利用该客观方法对1961—2016年中国的区域性暴雨过程进行识别,并分析其气候和气候变化特征。结果显示:我国区域性暴雨过程年均38.5次;区域性暴雨过程一年各月均可出现,但主要出现在4—9月,其中7、8月发生最为频繁,6月区域性暴雨过程持续时间长、范围广、综合强度强,这与长江中下游地区梅雨现象有关。一年中,区域性暴雨过程首次出现日期平均为3月6日,末次出现日期平均为11月14日;1961—2016年,我国年区域性暴雨过程首次出现日期呈明显提前、末次日期呈显著推后、暴雨期呈显著延长的变化趋势;年发生总频次呈微弱增多,较强区域性暴雨过程次数呈明显增加趋势;区域性暴雨过程的覆盖范围和综合强度均呈显著增大趋势。南方型区域暴雨过程变化趋势与全国的基本一致;北方型首次日期呈提前、末次日期呈推后趋势,发生频次有微弱减少趋势,覆盖范围、持续时间、综合强度均无明显变化趋势。  相似文献   
58.
利用19812016年68月河南省淮河流域64个国家自动观测站逐日2020时日降水量资料、常规高空探测和地面观测资料等对淮河流域连续性暴雨时间分布特征、影响系统等进行分析和天气分型,结果表明:1)36年淮河流域共发生45次连续性暴雨,2000年的最多,19982008年是高发期,近10年较少,年出现次数无明显减少趋势,存在2~4年和4~6年两个周期;7月连续性暴雨次数最多,6月的最少,旬分布呈正态分布;最长连续时间5天,连续2天的最多。2)影响系统主要有切变线和高低空急流,高空急流在方向转换的过程中,降水有24h左右的减弱期,低空急流有明显的日变化特征,夜间加强,白天减弱。3)连续性暴雨按照500hPa影响系统,分为低槽型、副高边缘型、西北低涡型三类。4)以不同类型的3次典型连续性暴雨为例,从大尺度环流背景、高度距平场、水汽输送、高低空急流等方面探讨了连续性暴雨的维持成因,3次连续性暴雨的发生与异常的500hPa大气环流、高低空急流、切变线和持续偏强的水汽输送等有关。  相似文献   
59.
为了解云南短时强降水发生前本地化中尺度WRF(Weather Research Forecast)模式输出结果的物理量特征及其对短时强降水预报的作用,使用WRF模式对2016年云南主汛期(6—8月)5次短时强降水过程进行模拟,利用模式输出的高时空分辨率资料计算5次过程中85个样本在短时强降水发生前6 h水汽类、动力类及不稳定条件类的部分物理量值,使用箱线图分析各物理量的分布特征及其与短时强降水的关系,应用经验累积分布函数图确定各物理量的阈值。研究表明,水汽类物理量样本数据值分布较为集中,随着短时强降水的临近数值逐渐增大;动力类的6 km垂直风切变中位数值及平均值随时间变化很小,所有时次的6 km垂直风切变阈值均低于12 m/s,表明短时强降水发生前有弱垂直风切变;不稳定条件类中对流有效位能样本数据的离散程度较大,对短时强降水无指示意义;LI指数、K指数和700 hPa假相当位温样本数据离散度较小,其中K指数中位数值、平均值及阈值的上下限在短时强降水发生前1 h有显著增大的特征,且数据集中度达到最高,大的K指数值与短时强降水有较好的对应关系。使用物理量阈值推算短时强降水落点的方法对云南本地化WRF模式短时强降水的预报性能有改进作用。  相似文献   
60.
An ensemble Kalman filter based on the Weather Research and Forecasting Model (WRF-EnKF) is used to explore the effectiveness of the assimilation of surface observation data in an extreme local rainstorm over the Pearl River Delta region on 7 May 2017. Before the occurrence of rainstorm, the signals of weather forecasts in this case are too weak to be predicted by numerical weather model, but the surface temperature over the urban area are high. The results of this study show that the wind field, temperature, and water vapor are obviously adjusted by assimilating surface data of 10-m wind, 2-m temperature, and 2-m water vapor mixing ratio at 2300 BST 6 May, especially below the height of 2 km. The southerly wind over the Pearl River Delta region is enhanced, and the convergence of wind over the northern Guangzhou city is also enhanced. Additionally, temperature, water vapor mixing ratio and pseudoequivalent potential temperature are obviously increased over the urban region, providing favorable conditions for the occurrence of heavy precipitation. After assimilation, the predictions of 12-h rainfall amount, temperature, and relative humidity are significantly improved, and the rainfall intensity and distribution in this case can be successfully reproduced. Moreover, sensitivity tests suggest that the assimilation of 2-m temperature is the key to predict this extreme rainfall and just assimilating data of surface wind or water vapor is not workable, implying that urban heat island effect may be an important factor in this extreme rainstorm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号