首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4022篇
  免费   586篇
  国内免费   833篇
测绘学   11篇
大气科学   1271篇
地球物理   1151篇
地质学   356篇
海洋学   1181篇
天文学   692篇
综合类   92篇
自然地理   687篇
  2024年   17篇
  2023年   42篇
  2022年   73篇
  2021年   70篇
  2020年   87篇
  2019年   126篇
  2018年   100篇
  2017年   112篇
  2016年   96篇
  2015年   132篇
  2014年   173篇
  2013年   270篇
  2012年   125篇
  2011年   189篇
  2010年   159篇
  2009年   276篇
  2008年   319篇
  2007年   371篇
  2006年   291篇
  2005年   222篇
  2004年   223篇
  2003年   237篇
  2002年   208篇
  2001年   150篇
  2000年   165篇
  1999年   166篇
  1998年   175篇
  1997年   89篇
  1996年   116篇
  1995年   102篇
  1994年   94篇
  1993年   83篇
  1992年   72篇
  1991年   66篇
  1990年   53篇
  1989年   43篇
  1988年   31篇
  1987年   26篇
  1986年   18篇
  1985年   13篇
  1984年   8篇
  1983年   6篇
  1982年   6篇
  1981年   3篇
  1980年   19篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1954年   4篇
排序方式: 共有5441条查询结果,搜索用时 281 毫秒
111.
Ocean Waves: Half-a-Century of Discovery   总被引:1,自引:0,他引:1  
While the nature of most ocean waves has long been known and their basic physics understood since the nineteenth century, intense study of ocean waves during the second half of the twentieth century has taken the subject from the realm of mathematical exercises to that of practical engineering. Modern understanding of the generation, propagation and interactions of ocean waves with each other and with oceanic features has advanced to a quantitative level offering predictive capacity. This paper presents a brief qualitative review of advances in knowledge of sound waves, wind waves, tsunamis, tides, internal waves and long-period vorticity waves. The review is aimed at non-specialists who may benefit from an overview of the current state of the subject and access to a bibliography of general-interest references. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
112.
根据1983-1989年南麂海洋站在台风影响过程中的实测风和浪资料,分析了该海域的波浪特征。结果表明,这个海域的台风波浪通常是混合浪,在台风影响过程中出现的最大值波高,既有较大波陡的风浪,也有波陡较小的清浪;各向波高的均值变化不大,各向最大波高却有较大幅度的差距;本区的台风浪以4级波高占优,风浪以NNE向、涌浪以E向为常浪向;波高为4级的风浪和涌浪,其周期分别在4.0-4.9S和7.0-7.9S之  相似文献   
113.
环台湾岛海域半日潮波特征的三维模拟   总被引:10,自引:0,他引:10  
用1997版POM海洋模式,首次应用于环台湾岛海域的潮波数值研究.得到该海域的半日潮波主要为23°N以南西太平洋传来的胁振潮.影响台湾海峡的半日潮波分别由海峡南北口传入的两支潮波,且北支强于南支.福建沿岸湄州湾-兴化湾为最强潮区,其M2分潮最大振幅可达240cm.最强潮流区位于澎湖水道,M2分潮最大潮流达196cm/s.环台湾岛海域潮波潮流水平结构上除海峡北部原有一个圆流点外,还发现另外存在4个新的圆流点.潮流垂直结构上主要为右偏,接近底层处为左偏.  相似文献   
114.
9914号(Dan)台风浪的后报试验研究   总被引:5,自引:2,他引:5  
利用WAM第三代海浪模式的第四版本(WAMC4)对40a来造成福建沿海灾害最严重的9914号台风海浪过程进行了后报试验,并与近岸常规观测和卫星高度计有效波高资料进行了比较。与常规观测站的比较结果表明,WAMC4能较好地再现海浪的发展过程。后报结果与TOPEX/POSEIDON和ERS-2卫星观测资料的对比研究表明,风速的后报结果与卫星观测有较好的一致性,但海浪的后报比卫星高度计反演的有效波高整体略偏低。  相似文献   
115.
Numerical modeling of nonlinear water waves over heterogeneous porous beds   总被引:1,自引:0,他引:1  
Eric C. Cruz  Qin Chen   《Ocean Engineering》2007,34(8-9):1303-1321
The transformation of nonlinear water waves over porous beds is studied by applying a numerical model based on Chen's [2006. Fully nonlinear Boussinesq-type equations for waves and currents over porous beds. Journal of Engineering Mechanics, 132:2, 220–230] Boussinesq-type equations for highly nonlinear waves on permeable beds. The numerical model uses a high-order time-marching solution and fourth-order finite-difference schemes for discretization of first-order spatial derivatives to obtain a computational accuracy consistent with the model equations. By forcing the wave celerity and spatial porous-damping rate of the linearized model to match the exact linear theory for horizontal porous bed over a prescribed range of relative depths, the values of the model parameters are optimally determined. Numerical simulations of the damped wave propagation over finite-thickness porous layer demonstrate the accuracy of both the numerical model and governing equations, which have been shown by prior theoretical analyses to be accurate for both nominal and thick porous layers. These simulations also elucidate on the significance of the higher-order porous-damping terms and the influence of the hydraulic parameters. Application of the model to the simulation of the wave field around a laboratory-scale submerged porous mound provides a measure of its capability, as well as useful insight into the scaling of the porous-resistance coefficients. For application to heterogeneous porous beds, the assumption of weak spatial variation of the porous resistance is examined using truncated forms of the governing equations. The results indicate that the complete set of Boussinesq-type equations is applicable to porous beds of nonhomogeneous makeup.  相似文献   
116.
In this paper the smooth perturbation technique is employed to investigate the problem of reflection of waves incident on the plane boundary of a semi-infinite elastic medium with randomly varying inhomogeneities. Amplitude ratios have been obtained for various types of incident and reflected waves. It has been shown that an incidentSH orSV type of wave gives rise to reflectedSH, P andSV waves, the main components beingSH andP, SV in the respective cases. The reflected amplitudes have been calculated depending upon the randomness of the medium to the square of the small quantity , where measures the deviation of the medium from homogeneity. An incidentP-type wave produces mainly aP component and also a weakSH component to the order of 2. The reflected amplitudes obtainable for elastic media are also altered by terms of the same order. The direction of the reflected wave is influenced by randomness in some cases.  相似文献   
117.
Any calculation of seismic wave propagation comprising the seismic source, the travel path, and the receiver site in a single finite-difference (FD) model requires a considerable amount of computer time and memory. Moreover, the methods currently available for including point sources in the 2D FD calculations are far-field approximations only. Therefore we have developed a new hybrid method for treating the seismic wave fields at localized 2D near-surface structures embedded in a 1D background medium, and excited by a point source. The source radiation and propagation in the background model is solved by the discrete-wave number (DW) method, while the propagation in the local 2D structure is calculated by the FD method. The coupling between the two sets of calculations is performed on a rectangular excitation box surrounding the local structure. We show the usefulness of the method in ground-motion studies where both near-field source effects and local site effects are important. Technical problems connected with the inconsistency between the 3D source radiation and the 2D FD calculation are minor for the relatively distant in-plane point explosive sources, but are more serious for the in-plane dislocation sources.  相似文献   
118.
Complete relations are derived for energy and energy flux of elastic waves generated by an isotropic and double-couple source in a perfectly elastic, homogeneous, isotropic, and unbounded medium. In the energy balance of elastodynamic sources near-field waves play an essential role, transforming static energy into wave energy, andvice versa. For explosive and dislocation sources, the sources surface radiates a positive wave energy that is partially distributed to the medium transforming into static energy. For implosive and antidislocation sources, the source surface generates elastic waves, but it does not necessarily imply that it also radiates a positive wave energy. The energy transported by waves can originate in gradual transformation of the static-to-wave energy during propagation of waves through a stressed medium.On leave from Geophysical Institute, Czech Academy of Sciences, Boní II/1401, 41 31, Praha 4 Czech Republic  相似文献   
119.
Nearshore sandbars are important features in the surf zone of many beaches because they strongly influence the mean circulation and evolving morphology. Due to variations in wave conditions, sandbars can experience cross-shore migration and vary in shape from alongshore uniform (shore-parallel) to alongshore rhythmic (crescentic). Sandbar dynamics have been studied extensively, but existing observational studies usually do not quantify the processes leading to crescentic bar formation and straightening. This study analyses the dynamics of crescentic bar events at the fetch-limited beach of Castelldefels (northwestern Mediterranean Sea, Spain) using 7.5 years of hourly time-exposure video images and detailed wave conditions. The results show that, despite the generally calm wave conditions, the sandbars were very dynamic in the cross-shore and longshore directions. They often migrated rapidly offshore during storms (up to 70 m in one day) and more slowly onshore during post-storm conditions. Crescentic bars were often present at the study site (48% of the time), but only when the sandbar was at least 10 m from the shoreline. They displayed a large variability in wavelengths (100–700 m), alongshore migration speeds (0–50 m/day) and cross-shore amplitudes (5–20 m). Wavelengths increased for larger bar–shoreline distances and the alongshore migration speeds were strongly correlated with the alongshore component of the radiation stresses. Crescentic patterns typically developed during low–medium energetic waves with limited obliquity ( θ20° at 10 m depth), while bar straightening occurred during medium–high energetic waves with strong oblique angles of incidence ( θ15°). Overall, this study provides further proof for the important role of wave direction in crescentic bar dynamics and highlights the strong dependence of crescentic bar development on the initial bathymetric configuration.  相似文献   
120.
We theoretically study the scattering ofP, SV andSH waves by a zonal distribution of cracks, which simulates a fault fracture zone. An investigation is conducted how the geometrical properties of the crack distribution and the frictional characteristics of the crack surface are reflected in the attenuation and dispersion of incident waves, as well as in the amplitudes of the transmitted and reflected waves from the zone. If the crack distribution within the fault zone changes temporally during the preparation process of the expected earthquake, it will be important for earthquake prediction to monitor it, utilizing the scattering-induced wave phenomena.We consider the two-dimensional problem. Aligned cracks with the same length are assumed to be randomly distributed in a zone with a finite width, on which elastic waves are assumed to be incident. The distribution of cracks is assumed to be homogeneous and sparse. The crack surface is assumed to be stress-free, or to undergo viscous friction; the latter case simulates fluid-filled cracks. The opening displacement of the crack is assumed to be negligibly small. The idea of the mean wave formalism is employed in the analysis, and Foldy's approximation is assumed.When the crack surface is stress-free, it is commonly observed for every wave mode (P, SV andSH) that the attenuation coefficientQ –1 peaks aroundka1, the phase velocity is almost independent ofk in the rangeka<1 and it increases monotonically withk in the rangeka>1, wherek is the intrinsicS wavenumber anda is the half length of the crack. The effect of the friction is to shift the peak ofQ –1 and the corner of the phase velocity curve to the low wavenumber range. The high wavenumber asymptote ofQ –1 is proportional tok –1 independently of model parameters and the wave modes. If the seismological observation thatQ –1 ofS waves has a peak at around 0.5 Hz in the earth's crust is combined with our results, the upper limit of crack size within the crust is estimated about 4 km. The information regarding the transmitted and reflected waves, such as the high wavenumber limit of the amplitude of the transmitted wave etc., allows estimation of the strength of the friction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号