首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   77篇
  国内免费   52篇
大气科学   15篇
地球物理   63篇
地质学   99篇
海洋学   60篇
综合类   13篇
自然地理   76篇
  2022年   8篇
  2021年   7篇
  2020年   13篇
  2019年   13篇
  2018年   6篇
  2017年   11篇
  2016年   5篇
  2015年   13篇
  2014年   16篇
  2013年   15篇
  2012年   10篇
  2011年   19篇
  2010年   14篇
  2009年   14篇
  2008年   11篇
  2007年   14篇
  2006年   16篇
  2005年   10篇
  2004年   16篇
  2003年   6篇
  2002年   8篇
  2001年   6篇
  2000年   12篇
  1999年   13篇
  1998年   6篇
  1997年   6篇
  1996年   4篇
  1995年   8篇
  1994年   9篇
  1993年   5篇
  1992年   1篇
  1991年   4篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有326条查询结果,搜索用时 171 毫秒
1.
不同氮源对微小亚历山大藻生长和毒素产生的影响   总被引:12,自引:0,他引:12  
通过尿素、氯化铵、酵母浸出粉和硝酸钠等氮源对微小亚历山大藻(Alexandrium minutum)生长及毒素产生的影响研究,分析了微小亚历山大藻对不同氮源利用状况的差异.结果表明,在氮饥饿条件下,加入硝酸钠和酵母浸出粉能显著促进微小亚历山大藻的生长;高浓度的氯化铵在加入后对微小亚历山大藻有一定的毒性效应,表现为生长停滞,但毒性效应在5 d后消失,并得到与添加硝酸钠及酵母浸出粉相似的增长速率0.21 d-1;添加尿素对微小亚历山大藻的生长没有显著促进作用.在四种氮源中,尿素对微小亚历山大藻毒素产生的刺激作用也最弱,在稳定期每个细胞藻细胞毒素含量维持在6.00~8.00 fmol;添加硝酸钠、氯化铵和酵母浸出粉的藻细胞在稳定期毒素含量分别达到11.85,12.86和14.64 fmol.硝酸钠和氯化铵刺激藻毒素产生的效果比酵母浸出粉更为直接.四种含氮营养盐对微小亚历山大藻毒素组成的影响都很小.  相似文献   
2.
Among numerous methods for cation exchange capacity (CEC) determination for soils and sediments, the cobaltihexamine chloride method is frequently used due to its ability to measure CEC at soil pH. After exchange with Co(NH3)63+ ions, CEC is estimated via the measurement of the Co remaining in solution. The modified method proposed allows a more rapid determination of CEC based on the measurement of the absorbance at 472 nm of the cobaltihexamine chloride solution before and after exchange. This method has been applied to various soil's horizons from four sites, selected to cover a wide range of CEC and pH values. The model obtained allows one to calculate CEC from absorbance at 472 nm with 95% confidence intervals. As CEC is of relevant meaning in agronomical and environmental purposes, and more recently in ecotoxicological studies, this modified method can be proposed as a rapid test for CEC evaluation.  相似文献   
3.
4.
氯化钠浮选剂概述   总被引:2,自引:0,他引:2       下载免费PDF全文
综述了各类氯化钠浮选剂对氯化钠的浮选。并对各类浮选剂的浮选性能进行了比较。  相似文献   
5.
董亚萍 《盐湖研究》1997,5(2):57-63
1,4—二溴苯,4,4’—二溴联苯、4,4’—二溴三联和亚磷酸三乙酯在催化剂无氯化镍催化下,干燥氮气保护.反应得到相应的有机二磷酸四乙酯。  相似文献   
6.
在干旱-半干旱地区由于入渗水分大部分滞留在包气带中,强烈地蒸发、蒸作用导致包气带中土壤水的氯离子浓度改变。氯离子示踪方法从质量守恒角度,通过比较土壤水分的氯离子浓度和降水输入的氯离子浓度大小,可以定量确定降水入渗量和降水入渗补给的历史变化过程。本文介绍了目前国外应用较普遍的氯离子均衡法和氯离子累积法,并讨论了方法应用时存在的一些问题。  相似文献   
7.
High-pressure, high-temperature diamond growth experiments have been conducted in the system C–K2CO3–KCl at 1050–1420 °C, 7.0–7.7 GPa. KCl is of interest because of the strong effect of halogens on the phase relations of carbonate-rich systems [Geophys. Res. Lett. 30 (2003) 1022] and because of the occurrence of KCl coexisting with alkali silicate–carbonate fluids in natural-coated diamond [Geochim. Cosmochim. Acta 64 (2000) 717]. We have used system C–K2CO3–KCl as an analogue for these mantle fluids in diamond growth experiments. The presence of KCl reduces the potassium carbonate liquidus to ≤1000 °C at 7.7 GPa, allowing it to act as a solvent catalyst for diamond growth at temperatures below the continental geotherm. This is a reduction on the minimum diamond growth temperature reported in the alkali-carbonate–C–O–H system [Lithos 60 (2002) 145]. Diamond growth using carbonate solvent catalysts is characterised by a relatively long induction period. However, the addition of KCl also reduced the period for diamond growth in carbonate to 5 min; no such induction period appears to be necessary. It is suggested that KCl destabilises carbonate, allowing greater solubility and diffusion of carbon.  相似文献   
8.
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
9.
Previous studies have shown that shallow groundwater in arid regions is often not in equilibrium with near‐surface boundary conditions due to human activities and climate change. This is especially the case where the unsaturated zone is thick and recharge rate is limited. Under this nonequilibrium condition, the unsaturated zone solute profile plays an important role in estimating recent diffuse recharge in arid environments. This paper combines evaluation of the thick unsaturated zone with the saturated zone to investigate the groundwater recharge of a grassland in the arid western Ordos Basin, NW China, using the soil chloride profiles and multiple tracers (2H, 18O, 13C, 14C, and water chemistry) of groundwater. Whereas conventional water balance and Darcy flux measurements usually involve large errors in recharge estimations for arid areas, chloride mass balance has been widely and generally successfully used. The results show that the present diffuse recharge beneath the grassland is 0.11–0.32 mm/year, based on the chloride mass balance of seven soil profiles. The chloride accumulation age is approximately 2,500 years at a depth of 13 m in the unsaturated zone. The average Cl content in soil moisture in the upper 13 m of the unsaturated zone ranges from 2,842 to 7,856 mg/L, whereas the shallow groundwater Cl content ranges from 95 to 351 mg/L. The corrected 14C age of shallow groundwater ranges from 4,327 to 29,708 years. Stable isotopes show that the shallow groundwater is unrelated to modern precipitation. The shallow groundwater was recharged during the cold and wet phases of the Late Pleistocene and Holocene humid phase based on palaeoclimate, and consequently, the groundwater resources are nonrenewable. Due to the limited recharge rate and thick unsaturated zone, the present shallow groundwater has not been in hydraulic equilibrium with near‐surface boundary conditions in the past 2,500 years.  相似文献   
10.
Exchange of groundwater and lake water with typically quite different chemical composition is an important driver for biogeochemical processes at the groundwater‐lake interface, which can affect the water quality of lakes. This is of particular relevance in mine lakes where anoxic and slightly acidic groundwater mixes with oxic and acidic lake water (pH < 3). To identify links between groundwater‐lake exchange rates and acid neutralization processes in the sediments, exchange rates were quantified and related to pore‐water pH, sulfate and iron concentrations as well as sulfate reduction rates within the sediment. Seepage rates measured with seepage meters (?2.5 to 5.8 L m‐2 d‐1) were in reasonable agreement with rates inverted from modeled chloride profiles (?1.8 to 8.1 L m‐2 d‐1). Large‐scale exchange patterns were defined by the (hydro)geologic setting but superimposed by smaller scale variations caused by variability in sediment texture. Sites characterized by groundwater upwelling (flow into the lake) and sites where flow alternated between upwelling and downwelling were identified. Observed chloride profiles at the alternating sites reflected the transient flow regime. Seepage direction, as well as seepage rate, were found to influence pH, sulfate and iron profiles and the associated sulfate reduction rates. Under alternating conditions proton‐consuming processes, for example, sulfate reduction, were slowed. In the uppermost layer of the sediment (max. 5 cm), sulfate reduction rates were significantly higher at upwelling (>330 nmol g‐1 d‐1) compared to alternating sites (<220 nmol g‐1 d‐1). Although differences in sulfate reduction rates could not be explained solely by different flux rates, they were clearly related to the prevailing groundwater‐lake exchange patterns and the associated pH conditions. Our findings strongly suggest that groundwater‐lake exchange has significant effects on the biogeochemical processes that are coupled to sulfate reduction such as acidity retention and precipitation of iron sulfides. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号