首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   139篇
  国内免费   49篇
测绘学   11篇
大气科学   29篇
地球物理   359篇
地质学   419篇
海洋学   56篇
天文学   2篇
综合类   35篇
自然地理   151篇
  2024年   2篇
  2023年   11篇
  2022年   12篇
  2021年   31篇
  2020年   37篇
  2019年   39篇
  2018年   34篇
  2017年   32篇
  2016年   37篇
  2015年   43篇
  2014年   48篇
  2013年   77篇
  2012年   53篇
  2011年   41篇
  2010年   36篇
  2009年   49篇
  2008年   53篇
  2007年   40篇
  2006年   47篇
  2005年   43篇
  2004年   32篇
  2003年   38篇
  2002年   26篇
  2001年   24篇
  2000年   18篇
  1999年   11篇
  1998年   18篇
  1997年   24篇
  1996年   8篇
  1995年   12篇
  1994年   17篇
  1993年   12篇
  1992年   10篇
  1991年   8篇
  1990年   9篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   7篇
  1984年   4篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有1062条查询结果,搜索用时 15 毫秒
81.
Due to their particular physiology and life history traits, bryophytes are critical in regulating biogeochemical cycles and functions in alpine ecosystem. Hence, it is crucial to investigate their nutrient utilization strategies in comparison with vascular plants and understand their responses to the variation of growing season caused by climate change. Firstly, this study testified whether or not bryophytes can absorb nitrogen(N) directly from soil through spiking three chemical forms of 15N stable isotope tracer. Secondly, with stronger ability of carbohydrates assimilation and photosynthesis, it is supposed that N utilization efficiency of vascular plants is significantly higher than that of bryophytes. However, the recovery of soil N by bryophytes can still compete with vascular plants due to their greater phytomass. Thirdly, resource acquisition may be varied from the change of growing season, during which N pulse can be manipulated with 15N tracer addition at different time. Both of bryophytes and vascular plants contain more N in a longer growing season, and prefer inorganic over organic N. Bryophytes assimilate more NH4+ than NO3– and amino acid, which can be indicated from the greater shoot excess 15N of bryophytes. However, vascular plants prefer to absorb NO3– for their developed root systems and vascular tissue. Concerning the uptake of three forms N by bryophytes, there is significant difference between two manipulated lengths of growing season. Furthermore, the capacity of bryophytes to tolerate N-pollution may be lower than currently appreciated, which indicates the effect of climate change on asynchronous variation of soil N pools with plant requirements.  相似文献   
82.
依据野外露头、岩芯、测井及相关测试资料,对鄂尔多斯盆地苏里格南部地区上古生界中二叠统石盒子组盒8沉积期的沉积类型、沉积微相特征及沉积相对天然气成藏富集的影响进行了分析。结果表明:鄂尔多斯盆地苏里格南部地区盒8沉积期自北向南依次发育缓坡浅水辫状河三角洲和滨浅湖沉积相,亚相主要为三角洲平原、三角洲前缘、滨湖和浅湖,微相包括分流河道、分流间洼地、水下分流河道、水下天然堤、分流间湾、滨湖砂坝、滨湖泥湾和浅湖泥湾;各微相在空间上相互叠置,复合加积;各微相水动力条件的差异造成微相在沉积物成分和组构上各异,导致其成岩作用不同;分流河道和水下分流河道微相发育处密集形成相互叠置的大面积骨架砂体,构成区内主砂带,成为天然气优质储集层,是有利勘探相带;沉积相明显控制优质储集层的分布,进而影响着天然气的富集成藏。总之,水下分流河道和分流河道微相是砂岩优质储集层分布和发育的最有利相带,也是今后勘探开发的方向。  相似文献   
83.
84.
85.
To date, published studies of alluvial bar architecture in large rivers have been restricted mostly to case studies of individual bars and single locations. Relatively little is known about how the depositional processes and sedimentary architecture of kilometre‐scale bars vary within a multi‐kilometre reach or over several hundreds of kilometres downstream. This study presents Ground Penetrating Radar and core data from 11, kilometre‐scale bars from the Río Paraná, Argentina. The investigated bars are located between 30 km upstream and 540 km downstream of the Río Paraná – Río Paraguay confluence, where a significant volume of fine‐grained suspended sediment is introduced into the network. Bar‐scale cross‐stratified sets, with lengths and widths up to 600 m and thicknesses up to 12 m, enable the distinction of large river deposits from stacked deposits of smaller rivers, but are only present in half the surface area of the bars. Up to 90% of bar‐scale sets are found on top of finer‐grained ripple‐laminated bar‐trough deposits. Bar‐scale sets make up as much as 58% of the volume of the deposits in small, incipient mid‐channel bars, but this proportion decreases significantly with increasing age and size of the bars. Contrary to what might be expected, a significant proportion of the sedimentary structures found in the Río Paraná is similar in scale to those found in much smaller rivers. In other words, large river deposits are not always characterized by big structures that allow a simple interpretation of river scale. However, the large scale of the depositional units in big rivers causes small‐scale structures, such as ripple sets, to be grouped into thicker cosets, which indicate river scale even when no obvious large‐scale sets are present. The results also show that the composition of bars differs between the studied reaches upstream and downstream of the confluence with the Río Paraguay. Relative to other controls on downstream fining, the tributary input of fine‐grained suspended material from the Río Paraguay causes a marked change in the composition of the bar deposits. Compared to the upstream reaches, the sedimentary architecture of the downstream reaches in the top ca 5 m of mid‐channel bars shows: (i) an increase in the abundance and thickness (up to metre‐scale) of laterally extensive (hundreds of metres) fine‐grained layers; (ii) an increase in the percentage of deposits comprised of ripple sets (to >40% in the upper bar deposits); and (iii) an increase in bar‐trough deposits and a corresponding decrease in bar‐scale cross‐strata (<10%). The thalweg deposits of the Río Paraná are composed of dune sets, even directly downstream from the Río Paraguay where the upper channel deposits are dominantly fine‐grained. Thus, the change in sedimentary facies due to a tributary point‐source of fine‐grained sediment is primarily expressed in the composition of the upper bar deposits.  相似文献   
86.
With the objective of improving flood predictions, in recent years sophisticated continuous hydrologic models that include complex land‐surface sub‐models have been developed. This has produced a significant increase in parameterization; consequently, applications of distributed models to ungauged basins lacking specific data from field campaigns may become redundant. The objective of this paper is to produce a parsimonious and robust distributed hydrologic model for flood predictions in Italian alpine basins. Application is made to the Toce basin (area 1534 km2). The Toce basin was a case study of the RAPHAEL European Union research project, during which a comprehensive set of hydrologic, meteorological and physiographic data were collected, including the hydrologic analysis of the 1996–1997 period. Two major floods occurred during this period. We compare the FEST04 event model (which computes rainfall abstraction and antecedent soil moisture conditions through the simple Soil Conservation Service curve number method) and two continuous hydrologic models, SDM and TDM (which differ in soil water balance scheme, and base flow and runoff generation computations). The simple FEST04 event model demonstrated good performance in the prediction of the 1997 flood, but shows limits in the prediction of the long and moderate 1996 flood. More robust predictions are obtained with the parsimonious SDM continuous hydrologic model, which uses a simple one‐layer soil water balance model and an infiltration excess mechanism for runoff generation, and demonstrates good performance in both long‐term runoff modelling and flood predictions. Instead, the use of a more sophisticated continuous hydrologic model, the TDM, that simulates soil moisture dynamics in two layers of soil, and computes runoff and base flow using some TOPMODEL concepts, does not seem to be advantageous for this alpine basin. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
87.
Regularities exist in fluid flows and can be represented by a set of constants. These constants are functions of the parameter of a probability distribution that exhibits resilience and stability under various flow conditions. Together, these regularities form a network and interact with each other, such that if one is known then the others can be determined from it. The regularities and their network explain the various fluid‐flow phenomena and can be used in analysis of rivers and streams. For example, they can be used as the basis to develop simple and efficient methods of discharge measurements as presented herein, which only require velocity sampling at a single point on a water surface or a few points on a single vertical. Because of their simplicity and the short time requirement, these methods can be easily automated for collecting discharge data in unsteady, high flows that are badly needed for real‐time flow forecasting and design of flood control structures, and for advancing the fundamental, scientific knowledge in hydrology. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
88.
Continuous monitoring of dissolved organic matter (DOM) character and concentration at hourly resolution is rare, despite the importance of analysing organic matter variability at high‐temporal resolution to evaluate river carbon budgeting, river water health by detecting episodic pollution and to determine short‐term variations in chemical and ecological function. The authors report a 2‐week experiment performed on DOM sampled from Bournbrook, Birmingham, UK, an urban river for which spectrophotometric (fluorescence, absorbance), physiochemical (dissolved organic carbon [DOC], electrical conductivity, pH) and isotopic (D/H) parameters have been measured at hourly frequency. Our results show that the river had sub‐daily variations in both organic matter concentration and characteristics. In particular, after relatively high‐magnitude precipitation events, organic carbon concentration increased, with an associated increase in intensity of both humic‐like and tryptophan‐like fluorescence. D/H isotopic ratio demonstrates different hydrological responses to different rainfall events, and organic matter character reflects this difference. Events with precipitation < 2 mm typically yielded isotopically heavy water with relatively hydrophilic DOM and relatively low specific absorbance. Events with precipitation > 2 mm had isotopically lighter water with higher specific absorbance and a decrease in the proportion of microbially derived to humic‐like fluorescence. In our heavily urbanized catchment, we interpret these signals as one where riverine DOM is dominated by storm sewer‐derived ‘old’ organic matter at low‐rainfall amounts and a mixed signal at high‐precipitation amounts where ‘event’ surface runoff‐derived organic matter dominate during storm sewer and combined sewer overflow routed DOM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
89.
白杨河冲积扇是由阵发性洪水期的碎屑流沉积物与间洪期辫状河沉积物组成的复合型冲积扇,其构型与碎屑流扇的构型和河流型扇的构型有很大的不同。本研究选取准噶尔盆地西北缘干旱气候下发育的现代白杨河冲积扇作为解剖实例,对103个天然剖面和9个人工大型探槽进行了详细测量,在沉积微相及不同级别的沉积构型的观测和分析的基础上,分析了阵发性洪水条件下间歇性辫状河型冲积扇体的地貌单元的演化过程和沉积构型特征,研究不同流态的阵发性洪水条件下各种建造和改造机制,明确受阵发性洪水控制的间歇性辫状河型冲积扇的沉积特征,建立了其沉积构型模式。认为: 在洪水期,阵发性洪流(碎屑流)形成席状化的片流(或片洪)沉积,在洪退期,随着洪水强度的减弱,又转变为辫流沉积,而在间洪期,仍有持续的辫状流体(牵引流)在限制性的水道中流动,并对洪水期的碎屑流沉积物进行改造,形成了限制性的(条带状的)辫状河道沉积,2个时期的沉积物在时空上频繁叠置,形成了一种更加复杂的沉积构型。该模式对油田地下冲积扇砂砾储集层的成因识别、预测及对比具有一定的参考价值。  相似文献   
90.
何艺玮  房元龙  冯文杰  刘远航  范洋  郭华粘  张佩  贾风娟 《地质论评》2023,69(2):2023020002-2023020002
辫状河三角洲是一类常见的沉积体系,也是一类常见的油气储层,其沉积特征、沉积演化过程及内部结构一直受到沉积学研究的关注。为明确辫状河三角洲沉积特征、演化过程及生长演变规律,笔者等通过水槽实验模拟辫状河三角洲在平缓的水下底形上逐步发育的过程,并采用三维激光扫描仪、延时拍照等手段进行精准的沉积地貌监测和定量沉积学分析。研究表明:① 辫状河三角洲沉积演化过程中,三角洲的规模、水流分散样式、沉积体表面地貌特征及沉积物分布样式存在阶段性差异,可据此将实验辫状河三角洲的演化分为3个阶段。② 在最初阶段,辫状河携带沉积物直接入“湖”堆积并形成朵状河口坝,入“湖”水流无明显的水道化特征,随着朵状河口坝逐渐堆积露出水面,三角洲平原初步形成,平原上河道开始分流并导致后续河口坝转变为连续的弧形坝分布于先期沉积体周缘,这一阶段三角洲平均半径快速增加;进入第二阶段后,三角洲平均半径增速减缓,供给河道进入三角洲平原后形成1~2条主干分流河道与多条次级分流河道,并在主干河道河口区形成弧形的前缘朵体;到第三阶段,三角洲平原面积已经较大,其平均半径增速进一步降低,平原上分流河道的分叉性更强、宽度更小,不同分流河道规模接近并可同时将沉积物输送到三角洲前缘多个部位发生沉积,在同一时期形成多个孤立的小规模的前缘朵体。③ 在整个沉积演化过程中,伴随着三角洲规模的逐渐增大,分流河道的宽度逐步减小、流程变长、分流河道数量逐步增加,三角洲前缘沉积由少量弧形的连续分布朵体转变为多个孤立分布的小规模朵体。④ 在第二、三阶段,分流河道表现为多个侵蚀—回填的自旋回演化过程,形成了多套自旋回沉积复合体。⑤ 辫状河三角洲前积层存在自下而上、由近向远表现为沉积连续性逐步减小、叠切规律逐渐复杂的特性。通过水槽实验揭示辫状河三角洲沉积演化过程及内部结构,可为露头解剖与地下储层研究提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号