首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   9篇
  国内免费   10篇
地球物理   13篇
地质学   26篇
海洋学   35篇
综合类   2篇
  2019年   2篇
  2018年   2篇
  2017年   5篇
  2016年   1篇
  2014年   5篇
  2013年   3篇
  2012年   3篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   2篇
  2006年   8篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有76条查询结果,搜索用时 20 毫秒
31.
琼东南海域天然气水合物地震反射特征   总被引:1,自引:0,他引:1  
天然气水合物是一种新能源,目前,世界上许多国家都在进行天然气水合物研究。琼东南盆地是天然气水合物可能赋存的重点目标区,笔者针对琼东南海域二维地震资料进行以突出含天然气水合物地层地震反射特征为目的的处理,进一步识别含天然气水合物地层地震反射特征与分布。通过应用地震资料保幅处理技术,对该海域含天然气水合物地层地震反射特征,如似海底反射(BSR)、BSR强反射界面之上的高速异常带、BSR附近的振幅空白带、BSR的极性反转等,有了更多的认识,对开展全区含BSR特征研究有借鉴意义。  相似文献   
32.
In western Canada gas hydrates have been thought to exist primarily in the Cascadia accretionary prism off southern Vancouver Island, British Columbia (BC). We present evidence for the existence of gas hydrate in folds and ridges of the Winona Basin up to 40 km seaward from the foot of the continental slope off northern Vancouver Island. The occurrence of a bottom-simulating reflector (BSR) observed in a number of vintage seismic reflection profiles is strongly correlated to faulted, and folded sedimentary ridges and buried folds. The observed tectonic structures of the Winona Basin are within the rapidly evolving Juan de Fuca - Cascadia - Queen Charlotte triple junction off BC. Re-processing of multi-channel data imaged mildly to strongly deformed sediments; the BSR is confined to sediments with stronger deformation. Changes in the amplitude character of sediment-reflections above and below the depth of the base of gas hydrate stability zone were also used as an indicator for the presence of gas hydrate. Additionally, regional amplitude and frequency reduction below some strong BSR occurrences may indicate free gas accumulations. Gas hydrate formation in the Winona Basin appears strongly constrained to folds and ridges and thus correlated to deeper-routed fluid-advection regimes. Methane production from in situ microbial activities as a source of gas to form gas hydrates, as proposed to be a major contributor for gas hydrates within the accretionary prism to the south, appears to be insufficient to produce the widespread gas hydrate occurrences in the Winona Basin. Potential reasons for the lack of sufficient in situ gas production may be that sedimentation rates are 5-100 times higher than those in the accretionary prism so that available organic carbon moves too quickly through the gas hydrate stability field. The confinement of BSRs to ridges and folds within the Winona Basin results in an areal extent of gas hydrate occurrences that is a factor of five less than what is expected from regional gas hydrate stability field mapping using water-depth (pressure) as the only controlling factor only.  相似文献   
33.
南海北部神狐海域甲烷水合物BHSZ与BSR的比较研究   总被引:5,自引:1,他引:4       下载免费PDF全文
天然气水合物(主要是甲烷水合物)因其重要的资源、环境意义越来越受人们关注.其在海底沉积物中的稳定存在及分布受温度、压力、甲烷供应量等因素的控制,勘探工作中,经常把似海底反射层(BSR)对应于甲烷水合物的稳定带底界(BHSZ).通过对南海北部地区甲烷水合物BHSZ与BSR的对比研究,我们发现在南海北部部分地区二者并不一致,二者之间的误差较大且呈一定的规律性分布,在神狐地区北部,水深较浅、沉积速率较快,BHSZ与BSR的误差为负,绝对值达192%;而在水深较深、基底为隆起的、沉积速率相对慢的神狐东南部,BHSZ与BSR的误差逐渐过渡到为正值,误差约为45%,我们综合分析了由速度-深度关系、BSR深度处反射时间、海底温度、平均热导率、静水/静岩压力模型、水合物稳定P-T方程等参数、流体活动性等计算参数可导致的的误差范围,最后认为导致BHSZ与BSR之间误差的主要因素可能是对BSR的理论认识上,在南海北部地区地震反射识别的部分BSR对应的可能是游离气带顶界(TFGZ)或古BSR或仅仅是由近水平地层或不整合面封存的含气层,而非传统意义上对应于BHSZ的BSR.而造成BHSZ与BSR规律性分布的基础地质因素则可能为在张裂基底上不同构造部位发育的不同的沉降、沉积过程及其热响应,进而造成不同的甲烷生成量、聚集量以及不同的水合物系统相对沉积物的迁移速率,最后产生不同深度的游离气顶界或不同深度的残留异常"古BSR"或含气层.  相似文献   
34.
根据Ecker的水合物沉积物的三种微观模式,计算含水合物沉积层和含游离气沉积物的弹性模量,分析对比了水合物的不同微观模式、不同水合物饱和度以及不同游离气饱和度对沉积物弹性模量的影响;从纵横波分离的弹性波动方程出发,采用交错网格空间有限差分方法模拟地震波在海底天然气水合物沉积地层的传播,得到纵、横波的海底地震(OBS)共接收点道集。数值算例表明,当水合物作为流体的一部分或胶结颗粒骨架时,仅纵波记录上存在BSR;当水合物胶结颗粒接触,纵、横波记录上均存在BSR。并且,OBS会接收到上行纵波和上行横波在海底界面形成的转换波,干扰横波记录上BSR的识别。  相似文献   
35.
从天然气水合物稳定区底界的地震似海底反射BSR(Bottom Simulating Reflector)深度计算得到的BSR热流包含了海底地貌(热流在凹地型会聚,在凸地形发散)和增生楔内部流体活动的影响。从BSR热流中移除地貌效应的贡献就能揭示出流体是否发生了汇聚。在难以使用解析方法计算地貌效应的复杂海底区域,三维有限元方法可以高精度的模拟地貌对背景热流的影响,从而可以对BSR热流进行地貌效应校正,得到平坦地形条件下的BSR热流,并进一步通过与背景热流值的对比,识别目前仪器所不能探测的流体汇聚区。在北卡斯卡底(Cascadia)俯冲边缘陆坡中部的研究区应用该方法,显示黄瓜岭(Cucumber Ridge)高地及其周围的海底热流正异常显著(高出背景热流值10-20%),同时这些区域在地震成像上与海底的裂隙系统相对应,指示了流体沿着这些高渗透率通道进行汇聚,并且很可能导致较高的水合物富集度。  相似文献   
36.
AVO (Amplitude Versus Offset) is a seismic exploration technology applied to recognize lithology and detect oil and gas through analyzing the feature of amplitude variation versus offset. Gas hydrate and free gas can cause obvious AVO anomaly. To find geophysical evidence of gas hydrate and free gas in Shenhu Area, South China Sea, AVO attribute inversion method is applied. By using the method, the multiple seismic attribute profiles and AVO intercept versus gradient (I-G) cross plot are obtained. Bottom-simulating reflector (BSR) is observed beneath the seafloor, and the AVO abnormal responses reveal various seismic indicators of gas hydrate and free gas. The final AVO analysis results indicate the existence of gas hydrate and free gas in the upper and lower layers of BSR in the study area.  相似文献   
37.
To what extent methane liberated from marine hydrate will enter the ocean during a warmer world is unknown. Although methane release due to hydrate dissociation has been modelled, it is unclear whether or not methane will reach the seafloor during a warmer world and therefore contribute to oceanic and atmospheric budgets. Here we show, using a new three-dimensional (3-D) seismic dataset, that some hydrate deposits surround the gas chimneys passing through the HSZ. Bottom water warming since the last glacial maximum (LGM) is interpreted to cause hydrate dissociation but critically some of the released methane was not vented to the ocean. The released gas caused seal failure and free gas entered the hydrate stability zone (HSZ) through vertical gas chimneys to where new hydrate accumulations formed. This process is a new evidence for methane recycling and could account in part for the lack of methane in ice core records that cover warming events during the late Quaternary. This research provides new insight into how methane could be recycled rather than vented during a warmer world.  相似文献   
38.
Methane can be released from the vast marine hydrate reservoirs that surround continents into oceans and perhaps the atmosphere. But how these pathways work within the global carbon cycle now and during a warmer world is only partially understood. Here we use 3-D seismic data to identify what we interpret to be a gas venting system that bypasses the hydrate stability zone (HSZ) offshore of Mauritania. This venting is manifested by the presence of the acoustic wipe-out (AWO) across a densely faulted succession above a salt diapir and a set of morphological features including a substantial, ∼260 m wide and ∼32 m deep, pockmark at the seabed. The base of the HSZ is marked by a bottom simulating reflector (BSR) which deflects upwards above the diapir, rather than mimicking the seabed. We use a numerical modelling to show that this deflection is caused by the underlying salt diapir. It creates a trapping geometry for gas sealed by hydrate-clogged sediment. After entering the HSZ, some methane accumulated as hydrate in the levees of a buried canyon. Venting in this locality probably reduces the flux of gas to the landward limit of feather edge of hydrate, reducing the volume of gas that would be susceptible for release during a warmer world.  相似文献   
39.
The bottom simulating reflector (BSR) in gas hydrate-bearing sediments is a physical interface which is composed of solid, gas, and liquid and is influenced by temperature and pressure. Deep sea floor sediment is a porous, unconsolidated, fluid saturated media. Therefore, the reflection and transmission coefficients computed by the Zoeppritz equation based on elastic media do not match reality. In this paper, a two-phase media model is applied to study the reflection and transmission at the bottom simulating reflector in order to find an accurate wave propagation energy distribution and the relationship between reflection and transmission and fluid saturation on the BSR. The numerical experiments show that the type I compressional (fast) and shear waves are not sensitive to frequency variation and the velocities change slowly over the whole frequency range. However, type II compressional (slow) waves are more sensitive to frequency variation and the velocities change over a large range. We find that reflection and transmission coefficients change with the amount of hydrate and free gas. Frequency, pore fluid saturation, and incident angle have different impacts on the reflection and transmission coefficients. We can use these characteristics to estimate gas hydrate saturation or detect lithological variations in the gas hydrate-bearing sediments.  相似文献   
40.
In many cases, the seismic response of bottom‐simulating reflectors is characterised by low frequencies called “low‐frequency shadow”. Generally, this phenomenon is interpreted as attenuation due to partial saturation with free gas. Actually, this frequency loss may have multiple causes, with a normal moveout stretch as a possible candidate. To analyse this phenomenon, we compute synthetic seismograms by assuming a lossy bottom‐simulating layer, with varying quality factor and thickness, bounded by the upper hydrate‐brine/gas‐brine and lower gas‐brine/brine interfaces. First, we estimate the shift of the centroid frequency of the power spectrum as a function of the travelled distance of the seismic pulse. Then, we perform one‐dimensional numerical experiments to quantify the loss of frequency of the seismic event below the bottom‐simulating reflector as a function of the quality factor of the bottom‐simulating layer and its thickness (due to wave interference). Then, we compute shot gathers to obtain the stacked section, with and without the normal moveout stretch correction and with and without the presence of wave attenuation in the bottom‐simulating layer. The results indicate that the low‐frequency shadow due to the normal moveout stretch is stronger than that due to attenuation and may constitute a false indicator of the presence of gas. In fact, often, the low‐frequency shadow overlies events with higher frequencies, in contradiction with the physics of wave propagation. This is particularly evident when the low‐frequency shadow is so extensive that the presence of high frequencies below cannot be justified by the acquisition geometry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号