首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1129篇
  免费   267篇
  国内免费   27篇
测绘学   16篇
大气科学   18篇
地球物理   910篇
地质学   239篇
海洋学   81篇
天文学   6篇
综合类   11篇
自然地理   142篇
  2024年   13篇
  2023年   5篇
  2022年   7篇
  2021年   65篇
  2020年   85篇
  2019年   37篇
  2018年   53篇
  2017年   51篇
  2016年   52篇
  2015年   53篇
  2014年   63篇
  2013年   120篇
  2012年   40篇
  2011年   48篇
  2010年   46篇
  2009年   37篇
  2008年   82篇
  2007年   58篇
  2006年   73篇
  2005年   33篇
  2004年   37篇
  2003年   48篇
  2002年   42篇
  2001年   23篇
  2000年   38篇
  1999年   26篇
  1998年   25篇
  1997年   27篇
  1996年   28篇
  1995年   10篇
  1994年   12篇
  1993年   13篇
  1992年   16篇
  1991年   5篇
  1990年   12篇
  1989年   8篇
  1988年   3篇
  1987年   8篇
  1986年   2篇
  1985年   5篇
  1984年   2篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1423条查询结果,搜索用时 15 毫秒
111.
The rivers of western India are monsoon dominated and have been so throughout the late Quaternary. Sediment accumulation in these river basins has been controlled by climatic and tectonic changes over a time span from the Late Pleistocene to the recent. The lithofacies assemblages associated with the various sediment archives in the Narmada basin range from the boulders of the alluvial fans to overbank fines on the alluvial plains. Estimates, based on clast size, of stream power and competence, bed shear stress and discharge reveal that hydrological conditions during the Late Pleistocene (∼90 ka) were comparable to the present day. The size of the transported clasts and the thickness of the accumulated sediment indicate the influence of basin subsidence rather than an increase in discharge. Discharge estimates based on sedimentary structures preserved in the alluvial-plain facies suggest that the channel had a persistent flow, with a low width-depth ratio and large meander wavelength. The hydrological changes during the Holocene are more pronounced where the early Holocene is marked by a high-intensity hydrological regime that induced erosion and incision of the earlier sediments. The mid-Holocene stream channel was less sinuous and had a higher width-depth ratio and a higher meander amplitude in comparison with the present-day channel. Palaeo-fluvial reconstructions based on the sediment archives in the alluvial reach of the river basin are important tools in understanding the long-term hydrological changes and the intricate fluvial architecture preserved in the Narmada River basin ensures scope for detailed studies to identify phases of weak and enhanced hydrological regimes.  相似文献   
112.
水下滑翔机可以高效地观测海水的温度、盐度和压强等海洋参数,但由于热滞后效应,盐度数据,特别是在温度梯度较大的温跃层,会出现一定程度的偏差。本研究选取了3种目前常用的盐度热滞后订正方法,对带泵的“海翼号”水下滑翔机,于2019年8月在中北太平洋所观测的盐度数据因热滞后效应引起的偏差进行订正处理,与船载911型温盐深测量仪(Instrument for Measuring Conductivity Temperature and Depth,CTD)观测盐度进行对比,在比较了3种方法对滑翔机盐度订正前后下降和上升剖面偏差的减少程度、订正后剖面与船载CTD观测剖面的偏差大小和下降上升温盐曲线(T-S曲线)的一致程度后,得出了水下滑翔机盐度订正的最优方法,即在订正电导池中实际温度的前提下,采用计算机图形分割方法,最小化滑翔机机载CTD测得的下降和上升两个剖面T-S曲线围成面积所确定的目标函数,来确定合适的热滞后修正振幅和时间常数,从而修正下降和上升两个剖面之间盐度偏差。  相似文献   
113.
本研究基于中国科学院沈阳自动化研究所自主研发的水下滑翔机在热带东太平洋观测获取的连续剖面温盐数据,并通过与多套不同数据的比测,证实国产水下滑翔机观测的温盐数据准确可靠,未来可大范围应用于深海大洋。观测结果首次发现该海域北太平洋中央水(NPCW)(50~100 m)的60~80 m层分布着中间层低盐水,分析认为该低盐水来源于水团下方的加利福尼亚流系水(CCS),中间层低盐水形成的动力机制主要受跃层附近的内波控制,并与内波强度密切相关,同时受上层(20~60 m)障碍层的影响,该中间层低盐水仅仅出现在60~80 m。本研究发现内波与障碍层能够通过影响动能与热能的传输进而促进水团新结构的形成,相关成果丰富了内波与障碍层对上层海洋响应的研究,具有重要的科学价值。  相似文献   
114.
洪水研究包括径流与淹没两种模式。为了探究流域降雨产汇流与淹没情况、提高洪水预报精度,本研究在传统流域水文模型的基础上耦合二维水动力学模型,建立水文-水动力耦合模型。以我国吉林温德河流域为研究实例,模拟了2017年“7·13”洪水在下游口前镇所处子流域洪水淹没过程。首先对基础数据进行预处理,建立HEC-HMS水文模型并进行参数优化后,最终获得流量过程水文结果作为水动力学模型边界条件,之后建立HEC-RAS二维水动力学模型对重要子流域进行淹没模拟。耦合模型计算结果显示,水文模型经多参数优化流量模拟的NSE系数为0.988,水动力计算最大淹没水深达9.3 m相对误差为-5.2%。从泛洪模拟结果来看,子流域上游部分的农田大量被淹,淹没水深范围在0.5~2.0 m,平均流速基本在1 m/s以下。下游口前镇内最大淹没水深接近1 m,水流速度0.2 m/s至1.5 m/s,与实际的淹没情况相吻合。研究表明,所建水文水动力耦合模型模拟计算的结果准确率较高,对具有复杂水文、水力条件的流域的洪水预报具有重要的指导意义。  相似文献   
115.
Assessing and managing the spatial variability of hydropedological properties are important in environmental,agricultural,and geological sciences.The spatial variability of soil apparent electrical conductivity(ECa) measured by electromagnetic induction(EMI) techniques has been widely used to infer the spatial variability of hydrological and pedological properties.In this study,temporal stability analysis was conducted for measuring repeatedly soil ECa in an agricultural landscape in 2008.Such temporal stability was statistically compared with the soil moisture,terrain indices(slope,topographic wetness index(TWI),and profile curvature),and soil properties(particle size distribution,depth to bedrock,Mn mottle content,and soil type).Locations with great and temporally unstable soil ECa were also associated with great and unstable soil moisture,respectively.Soil ECa were greater and more unstable in the areas with great TWI(TWI 〉 8),gentle and concave slope(slope 〈 3%; profile curvature 〉 0.2).Soil ECa exponentially increased with depth to bedrock,and soil profile silt and Mn mottle contents(R2= 0.57),quadratically(R2 = 0.47),and linearly(R 2 = 0.47),respectively.Soil ECa was greater and more unstable in Gleysol and Nitosol soils,which were distributed in areas with low elevation(〈 380 m),thick soil solum(〉 3 m),and fluctuated water table(shallow in winter and spring but deep in summer and fall).In contrast,Acrisol,Luvisol,and Cambisol soils,which are distributed in the upper slope areas,had lower and more stable soil ECa.Through these observations,we concluded that the temporal stability of soil ECa can be used to interpret the spatial and temporal variability of these hydropedological properties.  相似文献   
116.
Understanding the diverse ways that landscape connectivity influences the distribution of microbial species is central to managing the spread and persistence of numerous biological invasions. Here, we use geospatial analytics to examine the degree to which the hydrologic connectivity of landscapes influences the transport of passively dispersed microbes, using the invasive plant pathogen Phytophthora ramorum as a case study. Pathogen occurrence was analyzed at 280 stream baiting stations across a range of watersheds – exposed to variable inoculum pressure – in California over a 7-year period (2004–2010). Using logistic regression, we modeled the probability of pathogen occurrence at a baiting station based on nine environmental variables. We developed a novel geospatial approach to quantify the hydrologic connectivity of host vegetation and inoculum pressure derived from least cost distance analyses in each watershed. We also examined the influence of local environmental conditions within the immediate neighborhood of a baiting station. Over the course of the sampling period, the pathogen was detected at 67 baiting stations associated with coastal watersheds with mild climate conditions, steep slopes, and higher levels of inoculum pressure. At the watershed scale, hydrologic landscape connectivity was a key predictor of pathogen occurrence in streams after accounting for variation in climate and exposure to inoculum. This study illustrates a geospatial approach to modeling the degree to which hydrologic systems play a role in shaping landscape structures conducive for the transport of passively dispersed microbes in heterogeneous watersheds.  相似文献   
117.
We present the first testate amoeba‐based palaeohydrological reconstruction from the Swiss Alps, and the first depth to the water table (DWT) calibration dataset for this region. Compared to existing models, our new calibration dataset performs well (RMSEP = 4.88), despite the length of the water table gradient covered (53 cm). The present‐day topography and vegetation of the study mire Mauntschas suggest that it is partly ombrotrophic (large Sphagnum fuscum hummocks, one of which was the coring site) but mostly under the minerotrophic influence of springs in the mire and runoff from the surrounding area. Ombrotrophic Sphagnum fuscum hummocks developed at the sampling site only during the last 50 years, when testate amoebae indicate a shift towards dry and/or acid conditions. Prior to AD 1950 the water table was much higher, suggesting that the influence of the mineral‐rich water prevented the development of ombrotrophic hummocks. The reconstructed DWT correlated with Pinus cembra pollen accumulation rates, suggesting that testate amoebae living on the mire and P. cembra growing outside of it partly respond to the same factor(s). Finally, temperature trends from the nearby meteorological station paralleled trends in reconstructed DWT. However, contrary to other studies made on raised bogs of northwestern Europe, the highest correlation was observed for winter temperature, despite the fact that testate amoebae would more logically respond to moisture conditions during the growing season. The observed correlation with winter temperature might reflect a control of winter severity on surface moisture during at least the first part of the growing season, through snow melt and soil frost phenomena influencing run‐off. More ecohydrological work on sub‐alpine mires is needed to understand the relationships between climate, testate amoebae and peatland development. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
118.
The Chihuahua City region, located in the semiarid-arid northern highlands of Mexico, has experienced intensive groundwater abstraction during the last 40 years to meet water demands in the region. A geochemical survey was carried out to investigate the evolution from baseline to modern conditions of a 130-km flow path including the El Sauz–Chihuahua–Aldama–San Diego de Alcalá regions. The research approach included the use of major chemical elements, chlorofluorocarbons and environmental isotope (18O, 2H, 13C and 14C) tracers. Stable isotopes indicate that groundwater evolves from the evaporation of local rainfall and surface water. Groundwater located at the lower end of the flow section is up to 6000 years old and older groundwater in the order of 9000 years BP was found in a deep well located in the upper part of the flow system, implying contribution from a neighbour basin. The background groundwater chemistry upstream of Chihuahua City results from feldspar weathering. Beyond Chihuahua City the chemical conditions are strongly modified owing to disposal of sewage from public and industrial water supplies into the Rio Chuviscar, subsequent allocation of this water to agricultural irrigation areas and direct infiltration under the river bed. As a consequence, anions like chloride and sulphate are mainly related to surface sources. Nitrate is controlled in part by sewage from public supply and industry and in part by agricultural practices. Arsenic and fluoride are related to weathering of rock formations of local mineralized ranges and subsequent enrichment of the basin-fill by magmatic processes. The results of this study have implications for groundwater management in an arid region that depends entirely on groundwater for domestic, industrial and agricultural water consumption. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
119.
Describing the spatial variability of heterogeneous snowpacks at a watershed or mountain‐front scale is important for improvements in large‐scale snowmelt modelling. Snowmelt depletion curves, which relate fractional decreases in snow‐covered area (SCA) against normalized decreases in snow water equivalent (SWE), are a common approach to scale‐up snowmelt models. Unfortunately, the kinds of ground‐based observations that are used to develop depletion curves are expensive to gather and impractical for large areas. We describe an approach incorporating remotely sensed fractional SCA (FSCA) data with coinciding daily snowmelt SWE outputs during ablation to quantify the shape of a depletion curve. We joined melt estimates from the Utah Energy Balance Snow Accumulation and Melt Model (UEB) with FSCA data calculated from a normalized difference snow index snow algorithm using NASA's moderate resolution imaging spectroradiometer (MODIS) visible (0·545–0·565 µm) and shortwave infrared (1·628–1·652 µm) reflectance data. We tested the approach at three 500 m2 study sites, one in central Idaho and the other two on the North Slope in the Alaskan arctic. The UEB‐MODIS‐derived depletion curves were evaluated against depletion curves derived from ground‐based snow surveys. Comparisons showed strong agreement between the independent estimates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
120.
Hydrology and solute concentrations of two intermittent Mediterranean streams draining two nested catchments were compared. The two catchments were mainly underlain by granitic rocks and different types of sericitic schists. Only the lowland catchment had an alluvial zone and a well‐developed riparian forest. The rainfall–runoff relationship and the correlation between daily flow concentrations showed that hydrological behaviour was similar at both sites during most of the year. However, reverse fluxes were detected during the wetting and drying up periods only in the stream with an alluvial zone. The intermittence in stream flow also had effects on absolute solute concentrations, temporal solute dynamics and streamwater stoichiometry. Streamwater chemistry was not affected by drainage area, except for cations produced mainly by bedrock dissolution (i.e. calcium and magnesium) that increased with increasing catchment size. Differences in the relationship among cations and anions were detected between the two streams, which could be attributed to biogeochemical processes occurring in the alluvial zone. The multivariate model used in this study showed that stoichiometry was more useful than absolute concentrations when analyzing the influence of different lithologies on streamwater chemistry. Such differences were amplified in autumn, likely due to a low hydrological connectivity between the two nested catchments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号