首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4406篇
  免费   1132篇
  国内免费   1199篇
测绘学   272篇
大气科学   1573篇
地球物理   1628篇
地质学   1101篇
海洋学   970篇
天文学   69篇
综合类   314篇
自然地理   810篇
  2024年   17篇
  2023年   53篇
  2022年   152篇
  2021年   176篇
  2020年   214篇
  2019年   264篇
  2018年   204篇
  2017年   240篇
  2016年   209篇
  2015年   260篇
  2014年   311篇
  2013年   294篇
  2012年   315篇
  2011年   300篇
  2010年   228篇
  2009年   284篇
  2008年   278篇
  2007年   311篇
  2006年   345篇
  2005年   315篇
  2004年   254篇
  2003年   218篇
  2002年   175篇
  2001年   166篇
  2000年   149篇
  1999年   146篇
  1998年   150篇
  1997年   109篇
  1996年   102篇
  1995年   80篇
  1994年   83篇
  1993年   76篇
  1992年   62篇
  1991年   49篇
  1990年   25篇
  1989年   27篇
  1988年   29篇
  1987年   17篇
  1986年   10篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   5篇
  1979年   3篇
  1978年   6篇
  1977年   3篇
  1976年   1篇
  1954年   6篇
排序方式: 共有6737条查询结果,搜索用时 265 毫秒
951.
2001年1月26日高纬磁层顶通量管事件的观测研究   总被引:7,自引:4,他引:3       下载免费PDF全文
2001年1月26日11:10~11:40UT, ClusterⅡ卫星簇位于午后高纬磁鞘边界层和磁鞘区,此 时行星际磁场Bz为南向. 本文对在此期间观测到的多次磁通量管事件作了详细的研究 ,获得一系列的新发现:(1)高纬磁鞘边界层磁通量管的出现具有准周期性,周期约为78s ,比目前已知的磁层顶向阳面FTE的平均周期(8~11min)小得多. (2)这些通量管都具有 强的核心磁场;其主轴多数在磁场最小变化方向,少数在中间变化方向,有些无法用PAA判 定其方向(需要用电流管PAA确定),这与卫星穿越通量管的相对路径有关. (3)每个事件 都存在很好的HT参考系,在HT参考系中这些通量管是准定常态结构;所有通量管都沿磁层顶 表面运动,速度方向大体相同,都来自晨侧下方. 通量管的径向尺度为1~2RE, 与通 常的FTE通量管相当. (4)起源于磁层的强能离子大体上沿着管轴方向由磁层向磁鞘运动; 起源于太阳风的热等离子体沿管轴向磁层传输. 通量管为太阳风等离子体向磁层输运和磁层 粒子向行星际空间逃逸提供了通道. (5)每个通量管事件都伴随有晨昏电场的反转,该电 场为对流电场.  相似文献   
952.
通过对2003年盛夏(8月份)和晚秋(11月份)登陆海南岛的两个台风个例进行了大尺度环流背景、台风暴雨产生的大尺度条件、中尺度特征等方面的对比分析,揭示盛夏和晚秋登陆海南岛台风路径和暴雨的一般特性,并对其成因进行了探讨。  相似文献   
953.
广西岩溶堆积型铝土矿矿床特征   总被引:8,自引:0,他引:8  
岩溶堆积型铝土矿床是我国华南特有的一种新的铝土矿矿床类型,该类型矿床与其他铝土矿床相比存在较大的特殊性,其特殊性的表现随着勘探阶段的深入,得到了不断的归纳、论述,文章根据矿床地质勘探工作和矿山建成后多年生产(基建)勘探成果和矿山生产实际,就该矿床表现出的特殊性进行了分析研究,提出了新的认识.  相似文献   
954.
利用中国高空探空资料和NCEP/NCAR、ERA以及MERRA三种再分析资料,讨论了再分析资料风速场在中国区域的适用性问题。结果表明:在中国区域的年平均场上,高空风速在我国对流层高层和中层均存在长期减弱的趋势,在我国东部和南部地区的对流层低层也存在减弱趋势,ERA-interim资料和MERRA资料适用性相对较好。再分析资料风速在多年年平均场上普遍小于探空风速。在对流层高层,1980年代至1990年代ERA-interim资料适用性好,而21世纪以后,NCEP/NCAR的适用性较好;在对流层中层和低层,NCEP/NCAR资料适用性较好。在中国区域的季节平均场上,高空风速在冬季的对流层高层和中层中普遍存在增加的趋势,而在春季、夏季和秋季的对流层高层和中层存在减小的趋势。探空资料与再分析资料在冬季偏差最小,在夏季偏差最大。在对流层中层和低层,NCEP/NCAR资料和MERRA资料在冬季的可信度相对较好,MERRA资料在夏季的可信度相对较好;在对流层高层和平流层低层,ERA-interim资料和MERRA资料在四季中的可信度都相对较好。  相似文献   
955.
The effect of sea surface height (SSH) variability is one of the primary factors that limit the accuracy and resolution of altimeter-derived gravity values. We propose a method to estimate the influence of variation of the sea surface height on the accuracy of satellite-derived gravity by simulation technique, with a case study around Indonesian waters. Wederived an Indonesian marine gravity map using the Geosat-geodetic mission (GM). Since most of the area studied is located around coastal and shallow areas, the measurement of SSH of this area is less accurate. To obtain a distribution of SSH variability over the study area, Topex/Poseidon (T/P) data were first processed and assessed. Processing 52 cycles of the Topex/Poseidon data, the root mean square (RMS) of SSH variability for each cycle was found to vary from 1 to 179 cm. Further, for the purpose of estimating the accuracy of altimeter-derived gravity, we derived several levels of Gaussian noise, computed simulation data by adding the Gaussian noise to Geosat data, and determined simulated gravity maps. Based on the distribution of RMS values from T/P data and standard deviation (STD) differences between the simulated and the original gravity maps, we estimated the accuracy of the gravity map. Around Indonesian waters, the accuracy of the gravity map influenced by SSH variation was estimated to be within the range 0.8~93 mgal.  相似文献   
956.
基于多卫星融合资料的南海浪高时空分布特征研究   总被引:3,自引:0,他引:3  
为提高对南海波浪场的认识, 采用基于多卫星融合的2009年9月~2011年11月的AVISO(Archiving, Validation and Interpretation of Satellite Oceanographic data)有效浪高格点数据对南海浪高的月变化特征进行分析, 并结合南海的波浪特征和地形特点, 将南海划分为6个海区, 讨论南海浪高的空间分布规律。研究发现南海浪高具有以下2个特征: (1)南海浪高表现为由东向西、由北往南递减: 北部深水区>北部陆架区>南海中部≈北部湾>南部陆架区>泰国湾。(2)浪高的月变化与季风的变化密不可分: 10月~次年3月(冬季风影响期间)>4月和9月(季风转换期)>5月~8月(夏季风影响期间), 1月最大, 5月最小。该研究成果对开展南海海浪的中长期预报、保障南海资源开发和军事安全等有一定的借鉴意义和参考价值。  相似文献   
957.
基于GRACE得到的时变地球重力场数据反演了格陵兰冰盖2002~2011年期间的质量变化。结果表明:格陵兰冰盖2002~2011年的年消融总量为188±10km3/a,2002年以来冰盖整体的消融速率呈现出增加趋势;冰盖的消融区域主要集中在冰盖的东南部和西北部;自2008年以来,冰盖东南部的消融速率虽然有所放缓,但消融速率仍然维持在55±7km3/a;冰盖西北部的消融速率仍在增加,2008年以后达到了48±6km3/a。  相似文献   
958.
To investigate the behavior of dredged-sea-sand fill compacted inside tide embankments with a damaged geosynthetic mat, centrifugal model tests and numerical simulation were conducted, both considering variations in sea level. The results from the three centrifugal model tests demonstrate that the subsidence of the dredged-sea-sand fill inside tide embankments with a damaged geosynthetic mat was strongly affected by the loss of dredged-sea-sand into the filter layers with large particles and a decrease in the bearing capacity of the filter layers with small particles. In addition, a comparison of the test and simulation results confirms that the loss of sand into the filter layer and the subsidence of the dredged-sea-sand fill were well reproduced by the numerical simulation.  相似文献   
959.
影响南海混合层盐度季节变化的因素分析   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对1950-2012年的南海混合层盐度数据进行分析,发现影响南海北部和南部盐度季节变化的最主要因素存在很大的差异.在南海北部,影响混合层盐度季节变化的最主要因素是蒸发降水,其次是水平平流.随着逐步南移,蒸发降水对盐度季节变化的影响递减,水平平流的影响逐渐增大;而在南海南部,水平平流的作用超过蒸发降水成为影响盐度的季节变化的最主要因素.在整个南海区域,冬季海水垂直混合变强,混合层变厚,下层高盐海水进入混合层,使混合层海水盐度变高,从而对冬季海水盐度的上升趋势产生促进作用;夏季南海北部混合层底存在上升流,南海东南部由于Ekman输运导致混合层变厚,都会将混合层以下高盐海水带入混合层,使混合层海水盐度变高,从而对夏季海水盐度下降趋势产生阻碍作用,但垂直混合对盐度季节变化的影响不大,远小于蒸发降水和水平平流.  相似文献   
960.
利用Argo 浮标资料研究西北太平洋三维声速分布特征   总被引:1,自引:0,他引:1  
利用西北太平洋海区2002~2009年的Argo浮标剖面温度、盐度资料构建成0.5°×0.5°水平分辨率的三维声速网格化资料,并据此分析该海区声速的空间分布及季节变化特征。研究表明:该海区10 m层等声速线分布的季节变化较为明显,春、冬季的等声速线几乎与纬线平行,黑潮流经区域等声速线呈现一定的弯曲。100 m层等声速线分布的季节变化较小:北赤道流区,等声速线从外海向近岸延伸;吕宋岛东南部沿海,等声速线向南弯曲;吕宋岛、台湾岛东部等声速线呈现偏北方向的弯曲;琉球群岛附近,等声速线朝北偏东方向弯曲。此外,研究海区存在深海声道,声道轴最深的区域主要在吕宋海峡和日本东南部海区,其中吕宋海峡处的声道轴有显著的季节变化特征。可见,利用Argo浮标资料可以初步得到西北太平洋声速的空间分布及其季节变化特征,随着Argo剖面资料的增多,对该海区的声速场认识将会愈加清晰。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号