首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1415篇
  免费   344篇
  国内免费   634篇
测绘学   17篇
大气科学   114篇
地球物理   196篇
地质学   1748篇
海洋学   12篇
天文学   7篇
综合类   79篇
自然地理   220篇
  2024年   8篇
  2023年   22篇
  2022年   61篇
  2021年   69篇
  2020年   62篇
  2019年   62篇
  2018年   90篇
  2017年   90篇
  2016年   123篇
  2015年   108篇
  2014年   154篇
  2013年   135篇
  2012年   128篇
  2011年   134篇
  2010年   149篇
  2009年   98篇
  2008年   98篇
  2007年   99篇
  2006年   82篇
  2005年   83篇
  2004年   85篇
  2003年   60篇
  2002年   63篇
  2001年   43篇
  2000年   46篇
  1999年   34篇
  1998年   36篇
  1997年   22篇
  1996年   28篇
  1995年   35篇
  1994年   22篇
  1993年   14篇
  1992年   20篇
  1991年   15篇
  1990年   3篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有2393条查询结果,搜索用时 221 毫秒
81.
蒙古科布多省阿拉腾索音博地区地处阿尔泰构造带南缘,由一系列弧盆系及增生杂岩带组成。区内发育一条近东西向辉长岩带,辉长岩15颗锆石分为2类:一类具明显条带韵律环带,一类内部均匀干净,二者均不具核边结构,不含包体,结合高Th/U值(0.46~0.68),确定为典型的基性岩浆锆石;锆石LA-ICP-MS年龄加权平均值为317.6±1.6Ma,厘定其成岩时代为晚石炭世。研究对比表明,该辉长岩带形成于板块俯冲碰撞的尾声阶段,是阿尔泰造山运动大背景下区域基性岩浆活动的产物。  相似文献   
82.
内蒙古察右后旗红格尔图花岗岩岩体位于索伦缝合带以南,主要为正长花岗岩和二长花岗岩,富硅(70.44%~78.80%),富碱(7.46%~10.74%),贫镁、铁、钛等,A/CNK值在0.95~1.41之间,碱铝指数AKI值在0.68~0.97之间,碱度率AR值在3.30~6.68之间,为弱过铝质-过铝质类碱性系列花岗岩;稀土元素总量变化范围大,轻稀土元素富集,重稀土元素亏损,Eu呈负异常(δEu=0.03~0.89);富集高场强元素Th、U、Hf、Ta、Y等,亏损大离子亲石元素Sr、Ba、Eu等;高场强元素和值((Zr+Nb+Ce+Y)350×10~(-6))明显偏低,该岩体属于高分异I型花岗岩,形成于后造山(后碰撞)伸展构造环境。LA-ICP-MS锆石同位素测年,获得锆石~(206)Pb/~(238)U年龄加权平均值分别为267.2±1.4Ma、269.2±1.6Ma和272.1±1.2Ma,表明该岩体形成于中二叠世,因此研究区内两大板块碰撞缝合的时间应该至少早于该岩体的形成时代,即应该至少早于267.2~272.1Ma。  相似文献   
83.
研究区位于内蒙古北山北带,成矿地质条件优越,1∶20万水系沉积物测量异常明显,且分布有额勒根乌兰乌拉斑岩型钼(铜)矿。以1∶5万土壤地球化学测量成果为依据,以地质认识为基础,研究了区内元素地球化学数据特征、地球化学场特征及综合异常特征。认为区内主成矿元素为Mo、Cu、Au,主要的控矿层位为咸水湖组火山岩段,成矿有利侵入体为石炭纪花岗闪长岩。划分出5种综合异常类型,其中与斑岩钼(铜)矿系统有关的综合异常和与奥陶系建造有关的综合异常是今后解剖找矿的重点。  相似文献   
84.
This work restored the erosion thickness of the top surface of each Cretaceous formations penetrated by the typical well in the Hari sag, and simulated the subsidence burial history of this well with software BasinMod. It is firstly pointed out that the tectonic subsidence evolution of the Hari sag since the Cretaceous can be divided into four phases: initial subsidence phase, rapid subsidence phase,uplift and erosion phase, and stable slow subsidence phase. A detailed reconstruction of the tectonothermal evolution and hydrocarbon generation histories of typical well was undertaken using the EASY R_0% model, which is constrained by vitrinite reflectance(R_0) and homogenization temperatures of fluid inclusions. In the rapid subsidence phase, the peak period of hydrocarbon generation was reached at c.a.105.59 Ma with the increasing thermal evolution degree. A concomitant rapid increase in paleotemperatures occurred and reached a maximum geothermal gradient of about 43-45℃/km. The main hydrocarbon generation period ensued around 105.59-80.00 Ma and the greatest buried depth of the Hari sag was reached at c.a. 80.00 Ma, when the maximum paleo-temperature was over 180℃.Subsequently, the sag entered an uplift and erosion phase followed by a stable slow subsidence phase during which the temperature gradient, thermal evolution, and hydrocarbon generation decreased gradually. The hydrocarbon accumulation period was discussed based on homogenization temperatures of inclusions and it is believed that two periods of rapid hydrocarbon accumulation events occurred during the Cretaceous rapid subsidence phase. The first accumulation period observed in the Bayingebi Formation(K_1 b) occurred primarily around 105.59-103.50 Ma with temperatures of 125-150℃. The second accumulation period observed in the Suhongtu Formation(K_1 s) occurred primarily around84.00-80.00 Ma with temperatures of 120-130℃. The second is the major accumulation period, and the accumulation mainly occurred in the Late Cretaceous. The hydrocarbon accumulation process was comprehensively controlled by tectono-thermal evolution and hydrocarbon generation history. During the rapid subsidence phase, the paleo temperature and geothermal gradient increased rapidly and resulted in increasing thermal evolution extending into the peak period of hydrocarbon generation,which is the key reason for hydrocarbon filling and accumulation.  相似文献   
85.
内蒙古新地沟金矿是中型绿岩型金矿床,但已属于严重资源危机的矿山,急待寻找接替资源,因此对新地沟金矿床进行深部远景预测具有十分重要的意义。本文根据找矿矿物学和成因矿物学理论,利用显微镜、电子探针及热电仪系统分析新地沟金矿床不同标高和矿段中黄铁矿的热电型标型特征,研究结果表明:新地沟金矿床中黄铁矿的晶型以立方体、五角十二面体及聚形为主;热电系数变化主要集中在-331.10~340.20μV·°C~(-1)范围内,导电型多以N型为主,约占总含量的80%;成矿温度主要集中于250~340℃,属于中温矿床。黄铁矿热电性参数XNP变化范围较大,估算矿体剥蚀率为67.96%~74.31%。通过对黄铁矿导型的空间分布规律和矿体剥蚀分析表明:油篓沟矿段位于矿体中底部,向深部可能有小规模延伸,小西沟矿段钻孔ZK106在深部有较大规模的延伸,其矿化前景最好;小西沟矿段钻孔ZK102深部矿化前景次之;大汗青矿段钻孔ZK_2802其深部矿化前景较差。综合分析认为,该矿床深部具有较好的找矿潜力。  相似文献   
86.
对大兴安岭北段图里河地区满克头鄂博组火山岩进行了锆石U-Pb年代学及岩石地球化学研究,以便对其岩石成因和构造背景给予制约。流纹岩LA-ICP-MS锆石U-Pb定年结果表明,该地区满克头鄂博组火山岩形成时代为晚侏罗世(157±1Ma)。该组火山岩具有高硅(Si O2=69.09%~75.92%)、富碱(K2O+Na2O=8.04%~9.23%),贫镁、铁、钙的特征,属高钾钙碱性、偏铝质-弱过铝质岩石;稀土元素配分曲线呈轻稀土富集的右倾形式,(La/Yb)N=5.85~13.53,无铕异常或具有较弱的铕负异常;火山岩样品富集Rb、Th、U、K等大离子亲石元素,亏损Nb、Ta、Ti等高场强元素。Mg#值为12.14~31.01,平均值22,Nb/Ta值(6.67~27.17,平均值12.23),Rb/Sr值(0.35~3.63,平均值1.58),显示火山岩岩浆源区为下地壳。依据岩石地球化学特征、构造判别图解,结合区域构造演化特征,认为满克头鄂博组火山岩形成于蒙古—鄂霍茨克洋闭合的造山后伸展背景。  相似文献   
87.
内蒙古狼山山脉西侧分布有大面积的晚古生代岩浆岩,时代集中在早石炭世—晚二叠世,早石炭世角闪辉长岩、花岗闪长岩体出露于潮格温都尔镇西侧。角闪辉长岩体呈岩滴状产出,被花岗闪长岩体侵入,LA-ICP-MS锆石U-Pb年龄显示,角闪辉长岩的~(206)Pb/~(238)U加权平均年龄为329.0±2.3 Ma,花岗闪长岩的~(206)Pb/~(238)U加权平均年龄为331.1±0.9 Ma~330.0±4.2 Ma。花岗闪长岩暗色矿物以角闪石为主,富钠(Na2O=3.48%~4.46%),高钠钾比值(Na2O/K2O=1.03~2.39),钙碱性系列,P2O5-SiO_2之间存在较好的负相关性,岩石地球化学特征具Ⅰ型花岗岩的特点。Hf同位素及元素地球化学特征指示了角闪辉长岩及花岗闪长岩均来自于受地壳混染的亏损地幔,为同源岩浆演化的产物。角闪辉长岩及花岗闪长岩稀土元素配分型式一致,均为轻稀土元素富集,重稀土元素亏损,具弱的负Eu异常;角闪辉长岩富集Ba、Sr,亏损Nb、Ta、Zr、Hf;花岗闪长岩富集大离子亲石元素Rb、K、Pb、Sr,不同程度地亏损高场强元素Nb、Ta、P、Ti,总体反映了岩浆弧的地球化学特征。结合区域地质背景,早石炭世狼山地区侵入岩岩石组合为角闪辉长岩(闪长岩)+石英闪长岩+花岗闪长岩,认为狼山地区早石炭世处于大陆边缘弧构造背景。  相似文献   
88.
赵岩 《地质与资源》2018,27(5):417-423
辽宁阜新北部至内蒙古库伦旗地区的第四系冲、洪积地层分布广泛,但由于冲、洪积物岩性、岩相比较单调,在纵、横向上变化快,不易进行深入的研究.根据成因、孢粉以及形成时代将研究区第四系冲、洪积物划分出中更新统冲积物、上更新统冲洪积物、下全新统冲洪积物、中全新统冲积物、上全新统冲积物5个填图单位.不同时期的冲、洪积物沉积特征及沉积环境各具特色,形成了不同的地貌特征.确定冲、洪积物的沉积标志,并对其进行详细的划分,可以为研究区甚至我国整个北方地区提供第四系冲、洪积物各方面深入研究的资料.  相似文献   
89.
《Resource Geology》2018,68(4):337-351
The Bayinsukhtu tungsten deposit is a newly discovered quartz‐vein tungsten deposit in the Xing'an–Mongolia Orogenic Belt (XMOB) in southern Mongolia, hosted by the Bayinsukhtu granite porphyry. The granite porphyry is located mainly south of the study area, over 3 km2. The rock consists of quartz and feldspar phenocrysts in a fine‐grained matrix, also mainly composed of feldspar and quartz. The granite porphyry samples demonstrate high SiO2 and high alkalinity. All samples also straddle the high‐potassium calc‐alkaline series. In a plot of the molar ratios of A/NK versus A/CNK, the granites are metaluminous. The chondrite‐normalized REE patterns are characterized by large negative Eu anomalies and fractionated LREEs. The U–Pb age of zircons from the granite porphyry is 298.8 ± 1.8 Ma, and the Sm–Nd age of the five wolframite samples from the tungsten deposit is 303 ± 19 Ma. The cooling age of the granite porphyry and tungsten mineralization is within the error of measurement and is of the Late Carboniferous age. Geological and geochronological evidence shows that the tungsten mineralization and the granite porphyry at Bayinsukhtu are genetically closely related and that they are results of Carboniferous magmatism. Their tectonic setting is related to the accretion of the Central Asian Orogenic Belt during the late Paleozoic era.  相似文献   
90.
As shown by geological, mineralogical, and isotope geochemical data, trachybasaltic-trachytic-trachyrhyolitic (TTT) rocks from the Nyalga basin in Central Mongolia result from several eruptions of fractionated magmas within a short time span at about 120 Ma. Their parental basaltic melts formed by partial melting of mantle peridotite which was metasomatized and hydrated during previous subduction events. Basaltic trachyandesites have high TiO2 and K2O, relatively high P2O5, and low MgO contents, medium 87Sr/86Sr(0) ratios (0.70526-0.70567), and almost zero or slightly negative εNd(T) values. The isotope geochemical signatures of TTT rocks are typical of Late Mesozoic basaltic rocks from rift zones of Mongolia and Transbaikalia. The sources of basaltic magma at volcanic centers of Northern and Central Asia apparently moved from a shallower and more hydrous region to deeper and less hydrated lithospheric mantle (from spinel to garnet-bearing peridotite) between the Late Paleozoic and the latest Mesozoic. The geochemistry and mineralogy of TTT rocks fit the best models implying fractional crystallization of basaltic trachyandesitic, trachytic, and trachyrhyodacitic magmas. Mass balance calculations indicate that trachytic and trachydacitic magmas formed after crystallization of labradorite-andesine, Ti-augite, Sr-apatite, Ti-magnetite, and ilmenite from basaltic trachyandesitic melts. The melts evolved from trachytic to trachyrhyodacitic and trachyrhyolitic compositions as a result of prevalent crystallization of K-Na feldspar, with zircon, chevkinite-Ce, and LREE-enriched apatite involved in fractionation. Trachytic, trachyrhyodacitic, and trachyrhyolitic residual melts were produced by the evolution of compositionally different parental melts (basaltic trachyandesitic, trachytic, and trachyrhyodacitic, respectively), which moved to shallower continental crust and accumulated in isolated chambers. Judging by their isotopic signatures, the melts assimilated some crustal material, according to the assimilation and fractional crystallization (AFC) model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号