首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  国内免费   2篇
测绘学   1篇
地球物理   19篇
地质学   41篇
海洋学   3篇
自然地理   6篇
  2020年   2篇
  2018年   4篇
  2013年   4篇
  2012年   2篇
  2009年   7篇
  2008年   2篇
  2007年   12篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
  1977年   1篇
排序方式: 共有70条查询结果,搜索用时 15 毫秒
61.
新托尔巴奇克火山研究综述   总被引:3,自引:0,他引:3  
位于堪察加半岛的新托尔巴奇克山是世界上有史以来仅遥六个大裂隙喷发的火山之一,也是迄今对喷发研究得最为详尽的三个火山之一。本文从喷发活动、玄武岩、气体成分与升华物,喷发区地球物理特征,喷发预报,地震,形变及喷发机制等方面综合论述了该火山的观测观察成果,并指出这些成果对我国火山研究有重要的借鉴意义。  相似文献   
62.
The Asachinskoe epithermal Au‐Ag deposit is a representative low‐sulfidation type of deposit in Kamchatka, Russia. In the Asachinskoe deposit there are approximately 40 mineralized veins mainly hosted by dacite–andesite stock intrusions of Miocene–Pliocene age. The veins are emplaced in tensional cracks with a north orientation. Wall‐rock alteration at the bonanza level (170–200 m a.s.l.) consists of the mineral assemblage of quartz, pyrite, albite, illite and trace amounts of smectite. Mineralized veins are well banded with quartz, adularia and minor illite. Mineralization stages in the main zone are divided into stages I–IV. Stage I is relatively barren quartz–adularia association formed at 4.7 ± 0.2 Ma (K‐Ar age). Stage II consists of abundant illite, Cu‐bearing cryptomelane and other manganese oxides and hydroxides, electrum, argentite, quartz, adularia and minor rhodochrosite and calcite. Stage III, the main stage of gold mineralization (4.5–4.4 ± 0.1–3.1 ± 0.1 Ma, K‐Ar age), consists of a large amount of electrum, naumannite and Se‐bearing polybasite with quartz–adularia association. Stage IV is characterized by hydrothermal breccia, where electrum, tetrahedrite and secondary covellite occur with quartz, adularia and illite. The concentration of Au+Ag in ores has a positive correlation with the content of K2O + Al2O3, which is controlled by the presence of adularia and minor illite, and both Hg and Au also have positive correlations with the light rare‐earth elements. Fluid inclusion studies indicate a salinity of 1.0–2.6 wt% NaCl equivalent for the whole deposit, and ore‐forming temperatures are estimated as approximately 160–190°C in stage III of the present 218 m a.s.l. and 170–180°C in stage IV of 200 m a.s.l. The depth of ore formation is estimated to be 90–400 m from the paleo‐water table for stage IV of 200 m a.s.l., if a hydrostatic condition is assumed. An increase of salinity (>CNaCl≈ 0.2 wt%) and decrease of temperature (>T ≈ 30°C) within a 115‐m vertical interval for the ascending hydrothermal solution is calculated, which is interpreted as due to steam loss during fluid boiling. Ranges of selenium and sulfur fugacities are estimated to be logfSe2 = ?17 to ?14.5 and logfS2 = ?15 to ?12 for the ore‐forming solution that was responsible for Au‐Ag‐Se precipitation in stage III of 200 m a.s.l. Separation of Se from S‐Se complex in the solution and its partition into selenides could be due to a relatively oxidizing condition. The precipitation of Au‐Ag‐Se was caused by boiling in stage III, and the precipitation of Au‐Ag‐Cu was caused by sudden decompression and boiling in stage IV.  相似文献   
63.
Shear wave splitting measurements in South Kamchatka during the 3-year period (1996–1998) in which the Kronotsky Earthquake (M=7.7, December 5, 1997) occurred are used to determine anisotropic parameters of the subduction zone and shear wave splitting variations with time. The local small seismic events recorded at the Petropavlovskaya IRIS station (PET) were analyzed. The dominant azimuths of the fast shear wave polarizations for the 3-year period are defined within N95±15°E, which are consistent with the general Pacific Plate motion direction. Modeling of fast shear wave polarizations shows that HTI model with the symmetry axis oriented along N15°E±10° fit well the observed data for events the focal depths of which are less than 80 km. For the greater depths, the orthorhombic symmetry of medium is not excluded. The anisotropy coefficient increases generally with depth from 1–2% in the crust to 4–7.5% in the subducting plate. Variations in time delays show a general increase up to 10–15 ms/km during 1996–1997 before the large crustal earthquake series (M≈5.5–7) in the Avacha Bay and before the Kronotsky Earthquake. Analysis of fast S-wave azimuths of mantle events reveals a temporal cyclic variation. The most regular variations are observed for fast azimuths of deep events with a period of about 172 days over the 3-year period. The fast polarizations of crustal events behave comparatively stable. It is assumed that the major instabilities in stress state are localized in the descending slab and influenced the upper mantle and comparatively stable crust.  相似文献   
64.
Summary Focal mechanisms of 74 shallow and 16 intermediate earthquakes (1964–1970) in the Kamchatka-Commander region are discussed. Regional stress systems and the nature of faulting are analyzed. Complex stress fields in the Kamchatka-Commander region and variable aftershock processes of strong Kamchatka earthquakes show the existence of heterogeneities of the active seismic zone in the Region.  相似文献   
65.
西太平洋分布了全球大部分的洋内俯冲带,也是全球沟-弧-盆体系最发育的地区。勘察加(Kamchatka)半岛位于俄罗斯远东地区,地处太平洋西北部(51°~60°N、155°~164°E),是全球环太平洋岛弧的重要组成部分。前人对勘察加岛弧岩石地幔源区性质、熔融过程、岩浆结晶分异及熔/流体交代过程进行了详细的研究,并获得了丰硕的成果。最新的研究进展表明:(1)勘察加岛弧前缘火山和中部火山的源区主要为亏损地幔,而弧后区域则存在较为富集的地幔贡献;(2)勘察加岛弧不同区域的地幔源区流体性质具有一定的差异,导致从前缘火山至中部火山,地幔熔融程度逐渐降低;(3)勘察加岛弧不同区域岩石地球化学成分存在差异,而且,沿穿弧剖面某些元素或同位素(如δ11 B)表现出系统变化的特征,反应了俯冲板片流体通量和流体性质的差异;(4)勘察加半岛部分多期次火山(如Klyuchevskoy火山)地球化学成分复杂,可能反应了源区熔融条件的不同和岩浆结晶分异过程;(5)勘察加岛弧北部与阿留申岛弧近直角相交,导致异常的构造背景,促使该区域形成了具有埃达克质特征的岛弧岩浆。  相似文献   
66.
Volcanic plumes interact with the wind at all scales. On smaller scales, wind affects local eddy structure; on larger scales, wind shapes the entire plume trajectory. The polar jets or jetstreams are regions of high [generally eastbound] winds that span the globe from 30 to 60° in latitude, centered at an altitude of about 10 km. They can be hundreds of kilometers wide, but as little as 1 km in thickness. Core windspeeds are up to 130 m/s. Modern transcontinental and transoceanic air routes are configured to take advantage of the jetstream. Eastbound commercial jets can save both time and fuel by flying within it; westbound aircraft generally seek to avoid it.Using both an integral model of plume motion that is formulated within a plume-centered coordinate system (BENT) as well as the Active Tracer High-resolution Atmospheric Model (ATHAM), we have calculated plume trajectories and rise heights under different wind conditions. Model plume trajectories compare well with the observed plume trajectory of the Sept 30/Oct 1, 1994, eruption of Kliuchevskoi Volcano, Kamchatka, Russia, for which measured maximum windspeed was 30–40 m/s at about 12 km. Tephra fall patterns for some prehistoric eruptions of Avachinsky Volcano, Kamchatka, and Inyo Craters, CA, USA, are anomalously elongated and inconsistent with simple models of tephra dispersal in a constant windfield. The Avachinsky deposit is modeled well by BENT using a windspeed that varies with height.Two potentially useful conclusions can be made about air routes and volcanic eruption plumes under jetstream conditions. The first is that by taking advantage of the jetstream, aircraft are flying within an airspace that is also preferentially occupied by volcanic eruption clouds and particles. The second is that, because eruptions with highly variable mass eruption rate pump volcanic particles into the jetstream under these conditions, it is difficult to constrain the tephra grain size distribution and mass loading present within a downwind volcanic plume or cloud that has interacted with the jetstream. Furthermore, anomalously large particles and high mass loadings could be present within the cloud, if it was in fact formed by an eruption with a high mass eruption rate. In terms of interpretation of tephra dispersal patterns, the results suggest that extremely elongated isopach or isopleth patterns may often be the result of eruption into the jetstream, and that estimation of the mass eruption rate from these elongated patterns should be considered cautiously.  相似文献   
67.
68.
Subsurface temperature is affected by heat advection due to groundwater flow and surface temperature changes. To evaluate their effects, it was implemented the measurements of temperature-depth profile (T-D profile) and the continuous monitoring of soil temperature in the southern part of Kamchatka which has not affected by human activity. Additionally, stable isotopic compositions of surface water and groundwater were analyzed. T-D profile and stable isotopic compositions show groundwater flow system is differ from the shallow aquifer to the deep aquifer. In the shallow aquifer, T-D profile suggests the existence of upward groundwater flux. On the other hand, the annual variation of soil temperature is divided into the large variation period (VP) and the stable period (SP) by the magnitude of daily and seasonal variation. VP and SP correspond to the summer and the winter season, respectively, and it considers that the difference between VP and SP is caused by the effect of snow cover. Therefore, the T-D profile is affected by not only upward groundwater flux but also the surface warming particularly in the summer season (VP).  相似文献   
69.
The central part of the Kamchatka Peninsula is characterized by a well defined depression associated with active volcanism, aligned NE–SW. On the east, the depression is bounded by a prominent system of active faults known as the East Kamchatka Fault Zone (EKFZ). In order to improve understanding of the behaviour and kinematic role of this fault zone a fieldwork programme, including study of trenches, was conducted in the north-central part of this system. Aerial photograph analysis, ground-truthed, indicates a westward fault dip with predominantly normal slip, while lateral offsets of river terraces and stream channels demonstrate a combined dextral component. Over 20 excavated pits and natural exposures were examined to confirm a detailed tephra succession extending from the early Holocene to recent historic eruptions. This chronological framework then provided age control on five past faulting events recognised in three trenches. These events took place at about 10.5, 6.0, 4.5 and, in a two-event succession within a short time span, at 3.3–3.2 ka BP. Event clustering may be characteristic and fault length–displacement values suggest earthquakes of M6.5, thus representing a significant new element in regional seismic hazard evaluations; additional to events generated at the subduction interface. The relatively long gap in faulting since the two most recent events may also be significant for hazard scenarios and there is a possible link between the faulting and volcanic activity in the depression. Overall, the EKFZ, together with the Nachiki Transverse Zone farther south, is thought to define a regional-scale block that is extending eastwards independently from the rest of Kamchatka.  相似文献   
70.
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three. Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O, CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical characteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.

Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号