首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   550篇
  免费   271篇
  国内免费   65篇
测绘学   50篇
大气科学   122篇
地球物理   496篇
地质学   126篇
海洋学   52篇
天文学   9篇
综合类   8篇
自然地理   23篇
  2023年   2篇
  2022年   12篇
  2021年   5篇
  2020年   41篇
  2019年   42篇
  2018年   35篇
  2017年   27篇
  2016年   31篇
  2015年   30篇
  2014年   38篇
  2013年   41篇
  2012年   35篇
  2011年   45篇
  2010年   26篇
  2009年   40篇
  2008年   33篇
  2007年   42篇
  2006年   29篇
  2005年   32篇
  2004年   20篇
  2003年   20篇
  2002年   26篇
  2001年   22篇
  2000年   19篇
  1999年   18篇
  1998年   16篇
  1997年   18篇
  1996年   26篇
  1995年   14篇
  1994年   15篇
  1993年   18篇
  1992年   16篇
  1991年   12篇
  1990年   9篇
  1989年   9篇
  1988年   9篇
  1987年   2篇
  1985年   3篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有886条查询结果,搜索用时 15 毫秒
121.
In this paper, we compare the denoising- and inversion-based deblending methods using Stolt migration operators. We use Stolt operator as a kernel to efficiently compute apex-shifted hyperbolic Radon transform. Sparsity promoting transforms, such as Radon transform, can focus seismic data into a sparse model to separate signals, remove noise or interpolate missing traces. Therefore, Radon transforms are a suitable tool for either the denoising- or the inversion-based deblending methods. The denoising-based deblending treats blending interferences as random noise by sorting the data into new gathers, such as common receiver gather. In these gathers, blending interferences exhibit random structures due to the randomization of the source firing times. Alternatively, the inversion-based deblending treats blending interferences as a signal, and the transform models this signal by incorporating the blending operator to formulate an inversion problem. We compare both methods using a robust inversion algorithm with sparse regularization. Results of synthetic and field data examples show that the inversion-based deblending can produce more accurate signal separation for highly blended data.  相似文献   
122.
Western Anatolia hosts many low-to-moderate and high-temperature geothermal sources in which active faults play a dominant role to control the recharge and the discharge of geothermal fluid. In this study, we used the two-dimensional geoelectric structure of Kütahya Hisarcık geothermal field, and created a conceptual hydrogeophysical model that includes faults, real topographical variations and geological units. The temperature distribution and fluid flow pattern are also investigated. The depth extension of Hisarcık Fault, electrical basement and low resistivity anomalies related to the presence of geothermal fluid are determined by using resistivity studies in the area. Numerical simulations suggest that Hisarcık fault functioning as a fluid conduit primarily enables hot fluid to be transported from depth to the surface. It is shown that the locations of predicted outflow vents coincide with those of hot springs in the area.  相似文献   
123.
The subsurface media are not perfectly elastic, thus anelastic absorption, attenuation and dispersion (aka Q filtering) effects occur during wave propagation, diminishing seismic resolution. Compensating for anelastic effects is imperative for resolution enhancement. Q values are required for most of conventional Q-compensation methods, and the source wavelet is additionally required for some of them. Based on the previous work of non-stationary sparse reflectivity inversion, we evaluate a series of methods for Q-compensation with/without knowing Q and with/without knowing wavelet. We demonstrate that if Q-compensation takes the wavelet into account, it generates better results for the severely attenuated components, benefiting from the sparsity promotion. We then evaluate a two-phase Q-compensation method in the frequency domain to eliminate Q requirement. In phase 1, the observed seismogram is disintegrated into the least number of Q-filtered wavelets chosen from a dictionary by optimizing a basis pursuit denoising problem, where the dictionary is composed of the known wavelet with different propagation times, each filtered with a range of possible values. The elements of the dictionary are weighted by the infinity norm of the corresponding column and further preconditioned to provide wavelets of different values and different propagation times equal probability to entry into the solution space. In phase 2, we derive analytic solutions for estimates of reflectivity and Q and solve an over-determined equation to obtain the final reflectivity series and Q values, where both the amplitude and phase information are utilized to estimate the Q values. The evaluated inversion-based Q estimation method handles the wave-interference effects better than conventional spectral-ratio-based methods. For Q-compensation, we investigate why sparsity promoting does matter. Numerical and field data experiments indicate the feasibility of the evaluated method of Q-compensation without knowing Q but with wavelet given.  相似文献   
124.
We introduce a concept of generalized blending and deblending, develop its models and accordingly establish a method of deblended-data reconstruction using these models. The generalized models can handle real situations by including random encoding into the generalized operators both in the space and time domain, and both at the source and receiver side. We consider an iterative optimization scheme using a closed-loop approach with the generalized blending and deblending models, in which the former works for the forward modelling and the latter for the inverse modelling in the closed loop. We applied our method to existing real data acquired in Abu Dhabi. The results show that our method succeeded to fully reconstruct deblended data even from the fully generalized, thus quite complicated blended data. We discuss the complexity of blending properties on the deblending performance. In addition, we discuss the applicability to time-lapse seismic monitoring as it ensures high repeatability of the surveys. Conclusively, we should acquire blended data and reconstruct deblended data without serious problems but with the benefit of blended acquisition.  相似文献   
125.
极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫星的紫外极光成像仪(Ultraviolet Imager,UVI)数据,采用两种不同的极光强度表征方法,即曲线拟合方法(从UVI图像数据中提取极光强度沿磁余纬方向上的曲线特征,Curve Feature along the Magnetic Co-latitude Direction of the Auroral Intensity,CFMCD_AI)和网格化方法(从UVI图像数据中提取极光强度的网格化特征,Gridding Feature of the Auroral Intensity,GF_AI),来构造极区极光强度特征数据库.然后,利用该数据库,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)构建了以行星际/太阳风参数(行星际磁场三分量、太阳风速度和密度)和地磁指数(AE指数)为输入参数的两种极光强度预测模型(GRNN_CFMCD_AI模型和GRNN_GF_AI模型).利用图像质量评价指数结构相似度(structure similarity,SSIM)作为极光强度模型预测结果和对应的UVI图像的相似性评价标准(完全相似为1,不相似为0,一般认为SSIM大于0.5是具有较好的相似性),对两种极光强度模型进行了性能评价.结果显示,GRNN_GF_AI模型预测结果对应的SSIM值范围为0.36~0.77,均值为0.54,性能优于GRNN_CFMCD_AI模型的.  相似文献   
126.
CO2 saturations are estimated at Sleipner using a two-step imaging workflow. The workflow combines seismic tomography (full-waveform inversion) and rock physics inversion and is applied to a two-dimensional seismic line located near the injection point at Sleipner. We use baseline data (1994 vintage, before CO2 injection) and monitor data that was acquired after 12 years of CO2 injection (2008 vintage). P-wave velocity models are generated using the Full waveform inversion technology and then, we invert selected rock physics parameters using an rock physics inversion methodology. Full waveform inversion provides high-resolution P-wave velocity models both for baseline and monitor data. The physical relations between rock physics properties and acoustic wave velocities in the Utsira unconsolidated sandstone (reservoir formation) are defined using a dynamic rock physics model based on well-known Biot–Gassmann theories. For data prior to injection, rock frame properties (porosity, bulk and shear dry moduli) are estimated using rock physics inversion that allows deriving physically consistent properties with related uncertainty. We show that the uncertainty related to limited input data (only P-wave velocity) is not an issue because the mean values of parameters are correct. These rock frame properties are then used as a priori constraint in the monitor case. For monitor data, the Full waveform inversion results show nicely resolved thin layers of CO2–brine saturated sandstones under intra-reservoir shale layers. The CO2 saturation estimation is carried out by plugging an effective fluid phase in the rock physics model. Calculating the effective fluid bulk modulus of the brine–CO2 mixture (using Brie equation in our study) is shown to be the key factor to link P-wave velocity to CO2 saturation. The inversion tests are done with several values of Brie/patchiness exponent and show that the CO2 saturation estimates are varying between 0.30 and 0.90 depending on the rock physics model and the location in the reservoir. The uncertainty in CO2 saturation estimation is usually lower than 0.20. When the patchiness exponent is considered as unknown, the inversion is less constrained and we end up with values of exponent varying between 5 and 20 and up to 33 in specific reservoir areas. These estimations tend to show that the CO2–brine mixing is between uniform and patchy mixing and variable throughout the reservoir.  相似文献   
127.
1,209 earthquakes occurred in Xianyou, Fujian from August 4, 2010 to October 4, 2013. The largest earthquake was ML5.0 on September 4, 2013. In order to study the Xianyou earthquake sequence and understand the causative structure and stress field of Xianyou, the focal mechanism solutions of six earthquakes ( ML 〉 3. 5 ) in the Xianyou earthquake sequence are calculated using the broadband digital data of the Fujian Seismic Network with the seismic moment tensor inverse method. The results show that the focal faults of the six earthquakes are similar, which are all strike-slip faults striking to the northwest with high dip angles. The direction of the principal compressive stress axes is near SN, which is different from the stress field of Fujian region. The Xianyou earthquake sequence may have been induced by the stress adjustment after the impoundment of Jinzhong reservoir.  相似文献   
128.
试从现有的大量遥感影像中提取不同环境下地物的反射率,以目前常用的ETM+影像数据和荔枝波谱数据提取为例,先对影像进行系统校正得到星上反射率,然后采用6S大气校正模型对图像进行订正,反演地物的真实反射率,并采用与野外实测相结合的方法,分析了星上反射率、6S反演的反射率与实测值之间的误差,结果证明6S校正法是一种较高精度的地物波谱反演方法,可以方便、快捷、准确地从现有的大量遥感影像上直接获取荔枝的反射率.为下一步的自动高效从影像反演地物反射率的研究奠定了基础.  相似文献   
129.
The Mesozoic-Cenozoic tectonic history of the Muglad Basin, is dominated by extension and inversion tectonics, but evidence of the inversion tectonics has not been well documented yet. In some other rift basins of CARS and WARS the phase of the inversion tectonics is well documented by several authors.This paper presents a structural study of the Heglig field area located on the eastern flank of the Muglad Basin. Detailed 3D seismic interpretation allows a better understanding of the structural style of the Heglig field. The new structural analysis has shown that the Heglig field has a complex structural framework reflected in the presence of a combination of two structural styles. The extensional structure is influenced by inversion tectonics during the Santonian time that creates four-way dip anticline structure, overprinted by the subsequent extensional movement that creates tilted fault block. The presence of inversion tectonics has supported by different means including seismic reflection, velocity, and source rock maturity data. The authors attributed the trapping of oil in the Lower Bentiu reservoir, that requires a horizontal seal, to the presence of the four-way dip anticline structure created by the inversion tectonics.The current interpretation of the Heglig field 3D seismic data sheds new light on the development and evolution of a key structure in the Muglad Basin. The results help to resolve long-standing discussion concerning hydrocarbon accumulation of the lower part of Bentiu Formation that lacks horizontal sealing.  相似文献   
130.
The Goliat field consists of Middle to Late Triassic reservoirs which exploit an elongate anticline (the Goliat anticline) in the hanging wall of the Troms-Finnmark Fault Complex (TFFC), offshore Norway. The area is affected by a dense network of multiple trending fault populations which historically have inhibited seismic resolution owing to persistent fault shadow. Seismic investigations utilising a multi-azimuth three-dimensional survey (EN0901) allow much crisper delineation of seismic features previously unattainable by vintage single-azimuth surveys. Three dominant fault populations are identified in the area, two of which parallel TFFC segments, the Alke–Goliat (WSW–ENE) and the Goliat–Tornerose (NNE–SSW) segments. The Goliat field is located within a zone of intersection between both segments. A third E–W trending fault population, the Hammerfest Regional population, is likely influenced by the offshore extension of the Trollfjord-Komagelv Fault Complex (TKFZ). A local NW–SE trending fault population, the Goliat Central, affects the Goliat anticline and partitions Alke–Goliat and Goliat–Tornerose subsidiary faults resulting in curvilinear traces. Several cross-cutting relationships between fault populations are observed and may provide fluid compartmentalisation in the reservoirs. Compilation of regional transects and the EN0901 survey provides new insight into the evolution of the Goliat anticline which is underlain by a fault-bound basement terrace that became established in the Late Palaeozoic. The structure is interpreted to have formed due to vertical segmentation of the TFFC and cores the overlying broad anticline. The western limb of the Goliat anticline likely formed by differential compaction, whereas the eastern limb is primarily a result of hanging wall roll-over linked to variable listric to ramp-flat-ramp fault geometry. Rifting took place in the Palaeozoic (Carboniferous to Permian?), and in the Mesozoic, possibly as early as the Late Triassic, with a major event in the Late Jurassic to Early Cretaceous. Minor reactivations continued into the Late Cretaceous, and possibly the Early Cenozoic. Mesozoic syn-kinematic geometries in the hanging wall of the Goliat–Tornerose TFFC segment are consistent with deposition during up section propagation of a blind fault, over which, a monocline was established and later breached. Jogs (abrupt orientation changes) in fault traces, transverse folds (associated with displacement maxima/minima) and vertical fault jogs suggest the TFFC existed as a greater number of segments prior to amalgamation during the Late Triassic to Jurassic. A phase of Barremian inversion created local compression structures above blind extensional faults, and deeper seated buttressing against large faults. Polygonal faults affect the Late Cretaceous to Early Cenozoic successions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号