首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   34篇
  国内免费   43篇
测绘学   9篇
大气科学   13篇
地球物理   91篇
地质学   63篇
海洋学   89篇
天文学   5篇
综合类   10篇
自然地理   14篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   7篇
  2019年   3篇
  2018年   2篇
  2017年   10篇
  2016年   6篇
  2015年   9篇
  2014年   13篇
  2013年   10篇
  2012年   7篇
  2011年   23篇
  2010年   14篇
  2009年   8篇
  2008年   29篇
  2007年   12篇
  2006年   20篇
  2005年   8篇
  2004年   7篇
  2003年   10篇
  2002年   13篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1997年   3篇
  1996年   6篇
  1995年   4篇
  1994年   9篇
  1993年   5篇
  1992年   2篇
  1991年   7篇
  1990年   1篇
  1989年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
31.
Heavy loads of the nutrients nitrogen and phosphorus cause severe damage in many waters in the world. Nutrient trading markets where capped firms can buy and sell nutrient load credits have been established in several countries in order to achieve certain nutrient reduction targets at minimum costs for society. The availability of multifunctional nutrient abatement measures that simultaneously reduce loads of both nutrients, such as wetland construction, raises the issue of credit stacking, i.e. whether a firm constructing the wetland should earn credits for both nutrients. This article examines theoretically and empirically the implications of establishing alternative nutrient trading market designs (markets with and without credit stacking, a market for a bundled payment of nutrients, and separate markets for either nutrient) for total costs and achievement of stipulated nutrient reduction targets for the Baltic Sea. The results show that the total abatement cost of achieving reduction targets of both nutrients is always lowest if a market design with credit stacking is established, that markets without credit stacking result in higher abatement cost and nutrient abatement in excess of the reduction targets, and that none of the single nutrient market systems is able to generate the required abatement of both nutrients. The application to the Baltic Sea shows that the total abatement cost can be 20% higher when credit stacking is not allowed than when it is allowed.  相似文献   
32.
Tropical rivers display profound temporal and spatial heterogeneity in terms of environmental conditions. This aspect needs to be considered when designing a monitoring program for water quality in rivers. Therefore, the physico-chemical composition and the nutrient loading of the Upper Mara River and its two main tributaries, the Amala and Nyangores were monitored. Initial daily, and later a weekly monitoring schedule for 4 months spanning through the wet and dry seasons was adopted. Benthic macro-invertebrates were also collected during the initial sampling to be used as indicators of water quality. The aim of the current study was to investigate the physico-chemical status and biological integrity of the Upper Mara River basin. This was achieved by examining trends in nutrient concentrations and analyzing the structure, diversity and abundance of benthic macro-invertebrates in relation to varying land use patterns. Sampling sites were selected based on catchment land use and the level of human disturbance, and using historical records of previous water quality studies. River water pH, dissolved oxygen, electrical conductivity (EC), temperature, and turbidity were determined in situ. All investigated parameters except iron and manganese had concentration values within allowable limits according to Kenyan and international standards for drinking water. The Amala tributary is more mineralized and also shows higher levels of pH and EC than water from the Nyangores tributary. The latter, however, has a higher variability in both the total phosphorus (TP) and total nitrogen (TN) concentrations. The variability in TP and TN concentrations increases downstream for both tributaries and is more pronounced for TN than for TP. Macro-invertebrate assemblages responded to the changes in land use and water quality in terms of community composition and diversity. The study recommends detailed continuous monitoring of the water quality at shorter time intervals and to identify key macro-invertebrate taxa that can be used to monitor changes of the water quality in rivers of the Mara basin as a result of anthropogenic changes.  相似文献   
33.
Present study is an effort to distinguish between the contributions of natural weathering and anthropogenic inputs towards high salinity and nutrient concentrations in the groundwater of National Capital Territory (NCT) Delhi, India. Apart from the source identification, the aquifer of entire territory has been characterized and mapped on the basis of salinity in space and water suitability with its depth. Major element chemistry, conventional graphical plots and specific ionic ratio of Na+/Cl, SO4 2−/Cl, Mg2+/Ca2+ and Ca2+/(HCO3  + SO4 2−) are conjointly used to distinguish different salinization sources. Results suggest that leaching from the various unlined landfill sites and drains is the prime cause of NO3 contamination while study area is highly affected with inland salinity which is geogenic in origin. The seasonal water level fluctuation and rising water level increases nutrients concentration in groundwater. Mixing with old saline sub-surface groundwater and dissolution of surface salts in the salt affected soil areas were identified as the principle processes controlling groundwater salinity through comparison of ionic ratio. Only minor increase of salinity is the result of evaporation effect and pollution inflows. The entire territory has characterized into four groups as fresh, freshening, near freshening and saline with respect to salinity in groundwater. The salinity mapping suggests that in general, for drinking needs, groundwater in the fresh, freshening and near freshening zone is suitable up to a depth of 45, 20 and 12 m, respectively, while the saline zones are unsuitable for any domestic use. In the consideration of increasing demand of drinking water in the area; present study is vital and recommends further isotopic investigations and highlights the need of immediate management action for landfill sites and unlined drains.  相似文献   
34.
The source and significance of three nutrients – nitrogen, phosphorous and silicon – were investigated by a modified dilution method performed on seawater samples from the Central Yellow Sea (CYS), in spring blooming period of 2007. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the internal and external nutrient pools, as well as nutrients supplied through remineralization by microzooplankton grazing. The results indicate that phytoplankton growth during the bloom is mostly contributed by internal nutrient pools (KI=0.062–1.730). The external nutrient pools (KE=<0–0.362) are also of importance for phytoplankton growth during the bloom at some sampling sites. Furthermore, the contribution of the recycled-nutrient pool by remineralization (KR=<0–0.751) is significant when microzooplankton grazing rate was higher than 0.5 d−1 during the spring phytoplankton blooms in the Central Yellow Sea. Compared with internal phosphorus, internal nitrogen and silicon contribute more to the phytoplankton production at most sampling stations.  相似文献   
35.
36.
37.
The Mondego estuary (Portugal) suffered major changes in environmental quality due to eutrophication, however, in the late 1990s a restoration project was implemented in order to return the system to its original condition. The main goal of this paper is to evaluate the ecosystem response to the restoration measures applied at three different levels: water quality, primary producers and primary consumers.In post-restoration period a clear decline was observed in dissolved inorganic nitrogen which was reflected in the gradual recovery of Zostera noltii and a concomitant decline in green macroalgae.Macrobenthic assemblages responded variably to the recovery process. In the seagrass bed and intermediate area, there was a large increase in total biomass, but in the eutrophic area species diversity increased. Despite improvement in the ecological status of the system, full recovery has not been achieved yet, possible due to hysteresis in the dynamics of this system.  相似文献   
38.
Dinoflagellate cysts acquired from sediment cores were analyzed in order to reconstruct historical nutrient levels in Gamak Bay, Korea and Ariake Bay, Japan. Dinoflagellate cyst assemblages in Gamak Bay were characterized by high proportions of heterotrophic cysts such as Brigantedinium spp., Protoperidinium americanum and Polykrikos cysts, which suggested that nutrients levels may have already been high before 1970s, and then increased further to the hypertrophic conditions of the 1990s. In contrast, dinoflagellate cyst assemblages in Ariake Bay were characterized by high relative abundances of Lingulodinium machaerophorum and Spiniferites spp., which suggested that nutrient levels in Ariake Bay had increased gradually since the mid 1960s, and may have been significantly enhanced by the mid 1980s. Dinoflagellate cyst assemblages reflecting environmental changes in the two bays are contrasting, perhaps due to different nutrient enrichment mechanisms. This suggests that the indicators of nutrient levels encoded in dinoflagellate cyst assemblages may exhibit site-specific information.  相似文献   
39.
The influence of landscape on nutrient concentration and yield was analyzed in a tropical catchment, the Guare River in northern Venezuela. Spatial and temporal variation in nitrate, SRP and total P were determined in 15 sites located along the river mainstem and tributaries. Higher nitrate concentrations and yields were reported from upper sites and both decreased in the downstream direction along the river mainstem. These trends appear to be related to more pronounced slopes and larger proportions of agricultural and forest lands in subcatchments located in the upper part of the basin, and dense algal mats in the lower reaches. Nitrate values were higher during periods of high discharge, suggesting that nitrate is primarily transported by shallow subsurface flow. SRP represented between 60 and 80% of total P. Phosphorus concentrations were homogeneous along the river mainstem and showed little seasonal variation, while yields were higher in the upper basin. Multiple regression identified slope, runoff and agriculture as primary predictors of nitrate and phosphorus across the watershed, which suggests that both natural and anthropogenic landscape characteristics have a strong influence on nutrient levels in the Guare catchment.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号