首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
  国内免费   2篇
大气科学   2篇
地球物理   6篇
地质学   9篇
天文学   10篇
综合类   3篇
自然地理   1篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1997年   2篇
  1995年   1篇
  1992年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有31条查询结果,搜索用时 31 毫秒
1.
2.
3.
Several physical and observational effects may contribute to the significant imbalances of magnetic flux that are often observed in active regions. We consider an effect not previously treated: the influence of electric currents in the photosphere. Electric currents can cause a line-of-sight flux imbalance because of the directionality of the magnetic field they produce. Currents associated with magnetic flux tubes produce larger imbalances than do smoothly-varying distributions of flux and current. We estimate the magnitude of this effect for current densities, total currents, and magnetic geometry consistent with observations. The expected imbalances lie approximately in the range 0–15%, depending on the character of the current-carrying fields and the angle from which they are viewed. Observationally, current-induced flux imbalances could be indicated by a statistical dependence of the imbalance on angular distance from disk center. A general study of magnetic flux balance in active regions is needed to determine the relative importance of other - probably larger -effects such as dilute flux (too weak to measure or rendered invisible by radiative transfer effects), merging with weak background fields, and long-range connections between active regions.Operated for the National Science Foundation by the Association of Universities for Research in Astronomy.  相似文献   
4.
An experiment was conducted in conjunction with the total solar eclipse on 29 March 2006 in Libya to measure both the electron temperature and its flow speed simultaneously at multiple locations in the low solar corona by measuring the visible K-coronal spectrum. Coronal model spectra incorporating the effects of electron temperature and its flow speed were matched with the measured K-coronal spectra to interpret the observations. Results show electron temperatures of (1.10±0.05) MK, (0.70±0.08) MK, and (0.98±0.12) MK, at 1.1 R from Sun center in the solar north, east and west, respectively, and (0.93±0.12) MK, at 1.2 R from Sun center in the solar west. The corresponding outflow speeds obtained from the spectral fit are (103±92) km s−1, (0+10) km s−1, (0+10) km s−1, and (0+10) km s−1. Since the observations were taken only at 1.1 R and 1.2 R from Sun center, these speeds, consistent with zero outflow, are in agreement with expectations and provide additional confirmation that the spectral fitting method is working. The electron temperature at 1.1 R from Sun center is larger at the north (polar region) than the east and west (equatorial region).  相似文献   
5.
Invasive plant species are exerting a serious threat to biological diversity in many regions of the world. To understand plant invasions this study aims to test which of the two plant invasiveness hypotheses; ‘low native diversity' vs. ‘high native diversity', is supported by the regional distribution patterns of invasive plant species in the Himalayas,Nepal. This study is based on data retrieved from published literatures and herbarium specimens. The relationship between invasive plant species distribution patterns and that of native plant species is elucidated by scatter plots, as well as by generalized linear models. The native plant species and invasive plant species have similar distribution patterns and the maximum number of invasive plant species is found in the same altitudinal range where the highest richness for native tree species is found. There is a clear trend of higher invasive plant richness in regions where native tree species richness is relatively high.Consequently, the native plant richness is highest in the central phytogeographic region, followed by the eastern and the western regions, respectively. The invasive plant species also follows a similar trend.Additionally, the invasive plant species richness was positively correlated with anthropogenic factors such as human population density and the number of visiting tourists. This study supports the hypothesis that ‘high native diversity' supports or facilitates invasive plant species. Further, it indicates that nativeand invasive plant species may require similar natural conditions, but that the invasive plant species seem more dependent and influenced by anthropogenic disturbance factors.  相似文献   
6.
We have explored first-principles molecular dynamics simulation data for hydrous MgSiO3 liquid (with 10 wt% water) to gain insight into its structural and dynamical behavior as a function of pressure (0–150 GPa) and temperature (2,000–6,000 K). By visualizing/analyzing a number of parameters associated with short- and mid-range orders, we have shown that the melt structure changes substantially on compression. The speciation of the water component at low pressures is dominated by the isolated structures (with over 90% hydrogen participated) consisting of hydroxyls, water molecules, O–H–O bridging and four-atom (O–H–O–H and H–O–H–O) groups, where every oxygen atom may be a part of polyhedron or free (i.e., bound to only magnesium atom). Hydroxyls favor polyhedral sites over magnesium sites whereas molecular water is almost entirely bound to magnesium sites, and also interpolyhedral bridging (Si–O–H–O–Si) dominates other types of bridging. Water content is shown to enhance and suppress, respectively, the proportions of hydroxyls and molecular water. As compression increases, these isolated structures increasingly combine with each other to form extended structures involving a total of five or more O and H atoms and also containing threefold coordination species, which together consume over 80% hydrogen at the highest compression studied. Our results show that water lowers the mean coordination numbers of different types including all cation–anion environments. The hydrous melt tends to be more tetrahedrally coordinated but with the Si–Si network being more disrupted compared to the anhydrous melt. Protons increase the content of non-bridging oxygen and decrease the contents of bridging oxygen as well as oxygen triclusters (present at pressures above 10 GPa). The calculated self-diffusion coefficients of all atomic species are enhanced in the presence of water compared to those of the anhydrous melt. This is consistent with the prediction that water depolymerizes the melt structure at all pressures. Our analysis also suggests that proton diffusion involves two processes—the transfer of H atoms (requiring the rupture and formation of O–H bonds) and the motion of hydroxyls as hydrogen carriers (requiring the rupture and formation of Si–O and/or Mg–O bonds). Both the processes are operative at low compression whereas only the first process is operative at high compression.  相似文献   
7.
8.
9.
We conducted an experiment in conjunction with the total solar eclipse of 29 March 2006 in Libya that measured the coronal intensity through two filters centered at 3850 Å and 4100 Å with bandwidths of ≈?40 Å. The purpose of these measurements was to obtain the intensity ratio through these two filters to determine the electron temperature. The instrument, Imaging Spectrograph of Coronal Electrons (ISCORE), consisted of an eight inch, f/10 Schmidt Cassegrain telescope with a thermoelectrically-cooled CCD camera at the focal plane. Results show electron temperatures of 105 K close to the limb to 3×106 K at 1.3R . We describe this novel technique, and we compare our results to other relevant measurements. This technique could be easily implemented on a space-based platform using a coronagraph to produce global maps of the electron temperature of the solar corona.  相似文献   
10.
Although Himalayan glaciers are of particular interest in terms of future water supplies, regional climate changes, and sea-level rises, little is known about them due to lack of reliable and consistent data. There is a need for monitoring these glaciers to bridge this knowledge gap and to provide field measurements necessary to calibrate and validate the results from different remote sensing operations. Therefore, glaciological observations have been carried out by the Cryosphere Monitoring Project(CMP) since September 2011 on Rikha Samba Glacier in Hidden valley, Mustang district in western Nepal in order to study its annual mass balance. This paper presents the first results of that study. There are 10 glaciers in Hidden Valley, named G1, G2, G3, up to G10. Of these, G5 is the Rikha Samba Glacier, which has the largest area(5.37 km2) in this valley and the highest and lowest altitudes(6,476 and 5,392 m a.s.l., respectively). The glacier mass balance discussed in this paper was calculated using the glaciological method and the equilibrium line altitude(ELA). The glacier showed a negative annual point mass balance along the longitudinal profile of its lower part from September 10, 2011 to October 3, 2012. Stake measurements from October 4, 2012 to September 30, 2013 indicated a negative areal average of annual mass balance-0.088±0.019 m w.e. for the whole glacier. Based on these observations, the ELA of the Rikha Samba Glacier is estimated at 5,800 m a.s.l. in 2013. This negative balance may be due to rising air temperatures in the region, which have been incrementally rising since 1980 accompanied by little or no significant increase in precipitation in that period. The negative mass balance confirms the general shrinking trend of the glacier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号