首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3169篇
  免费   809篇
  国内免费   1142篇
测绘学   70篇
大气科学   1221篇
地球物理   684篇
地质学   1910篇
海洋学   75篇
天文学   11篇
综合类   173篇
自然地理   976篇
  2024年   17篇
  2023年   69篇
  2022年   165篇
  2021年   219篇
  2020年   203篇
  2019年   222篇
  2018年   192篇
  2017年   177篇
  2016年   149篇
  2015年   183篇
  2014年   224篇
  2013年   239篇
  2012年   220篇
  2011年   185篇
  2010年   187篇
  2009年   251篇
  2008年   219篇
  2007年   240篇
  2006年   279篇
  2005年   193篇
  2004年   160篇
  2003年   164篇
  2002年   149篇
  2001年   157篇
  2000年   117篇
  1999年   109篇
  1998年   81篇
  1997年   72篇
  1996年   71篇
  1995年   42篇
  1994年   36篇
  1993年   30篇
  1992年   23篇
  1991年   29篇
  1990年   17篇
  1989年   13篇
  1988年   8篇
  1987年   2篇
  1986年   3篇
  1978年   1篇
  1954年   3篇
排序方式: 共有5120条查询结果,搜索用时 15 毫秒
991.
青藏高原冻土区活动层厚度分布模拟   总被引:16,自引:10,他引:6  
活动层夏季融化、冬季冻结的近地表土(岩)层,是冻土地区热力动态最活跃的岩层,在冻土研究中有着重要意义.根据青藏高原地区80个气象观测台站1991-2000年的地面温度观测资料结合数字高程模型,计算出青藏高原冻土区的地面冻结指数和地面融化指数,然后应用斯蒂芬公式分别得到多年冻土区的季节融化深度和季节冻土区的季节冻结深度.  相似文献   
992.
选择黄土高原造林的主要模式,即梯田、水平沟、鱼鳞坑和台地等,并按照阴阳坡向,栽植树种等的不同,采用中子水分仪每10 d测定土壤水分一次,对各种造林模式下土壤水分进行了长期的监测研究,研究结果表明:在春季植物萌发之前,无植物生长影响的情况下,土壤水分含量阴坡高于阳坡,南山与北山同坡向相比,南山的水分条件要好于北山;4月中旬以后,受植物生长消耗的影响,北山的水分含量大于南山,南山的水分波动则大于北山;鱼鳞坑、水平沟都具有一定的集水保水作用,但这种集水的作用与降水量的大小有关,水平沟由于面积较大,表面覆膜集水效果更好;阴坡梯田由外向内随着距离的增加,水分呈现逐渐增加的趋势,梯田内侧达到最大.  相似文献   
993.
黄土高原西部兰州市郊人工林地水分亏缺与调控研究   总被引:3,自引:1,他引:2  
通过定位监测与对比分析,对兰州市南北两山不同水分管理人工林地植物水分亏缺度及植物水分亏缺补偿度的时空分布进行了研究。结果表明:灌溉林地的植物水分亏缺度最小,亏缺度大部分时间都在20%以下,有自然坡面集雨的林地植物水分亏缺状况好于不灌溉的林地,侧柏林地喷灌、自然坡面集雨和不灌三种处理方式下的植物水分亏缺度虽然稍有差异,但都处于水分极度亏缺的状况。补充灌溉除满足林地正常生长所需要的水分外,对土壤水分也有一定的补偿,补偿度在70%左右。其他不灌溉地块补偿度都为负值,说明这些地块整个雨季没有对水分进行补偿,还将土壤以前贮藏的部分土壤水分利用。植物水分亏缺度在空间上的变化与植物根系的分布相一致。既在水平方向上,随着离树干距离的加大,植物水分亏缺度依次降低。在垂直方向上,表层植物水分的亏缺度最低,随着深度的增加,亏缺度逐渐增大,100~120 cm深达到最大,以后又缓慢降低。植物水分补偿度是降雨与植物水分亏缺程度的反映,植物水分亏缺度越高,补偿度越大。  相似文献   
994.
黄土高原西部植物耗水实验研究   总被引:2,自引:0,他引:2  
针对兰州地区8种常见植物的盆栽试验,比较了其耗水量的变化特征,结果表明:在充分供水条件下,8种植物在试验期间内都能正常生长,植物耗水量从大到小排序为:柽柳>柠条>芨芨草>侧柏>甘蒙锦鸡儿>紫穗槐>红砂>珍珠;在集雨条件下,植物耗水排序为:芨芨草>珍珠>柠条、侧柏、甘蒙锦鸡儿、>红砂、紫穗槐>柽柳,但柽柳和紫穗槐在集雨条件下生长出现干枝,生长不好。在雨养条件下,除红砂、甘蒙锦鸡儿、珍珠受到干旱胁迫不明显外,其余植物不同程度上有枯叶出现。紫穗槐死亡,柽柳接近死亡,其他植物耗水排序为:珍珠、芨芨草>侧柏、甘蒙锦鸡儿、柠条>红砂。  相似文献   
995.
黄土高原西部弃耕地植被恢复与土壤水分调控研究   总被引:15,自引:0,他引:15  
选择黄土高原半干旱偏旱区2 a、3 a、4 a、5 a、7 a、9 a、12 a、20 a的弃耕台地和天然台地,调查各弃耕地和天然台地的植物种类、数量、盖度、频度和地上生物量,定期采样分析各样地0~100 cm土层土壤水分。结果表明:农田弃耕后植被沿天然植被方向演替,在演替过程中,植物种类数量逐渐增加,但在弃耕9 a后开始减少,20 a后接近于天然台地;更耐旱的多年生草本和小灌木种增加;除7~9 a波状变化外,植被盖度和地上生物量呈逐渐减少趋势,弃耕初期的植被盖度和地上生物量显著大于弃耕12 a后和天然台地;12 a和20 a弃耕地0~100 cm土层含水量高于其他弃耕地和天然台地,弃耕初期表层土壤含水量较高,天然台地含水量居中,但其植被对水分利用的时间延长,范围扩大,表明天然台地植被的水分利用率提高,植被群落更加稳定。  相似文献   
996.
青藏高原北部移动冰丘破坏桥墩的数值模拟   总被引:1,自引:0,他引:1  
青藏高原北部常年冻土区断裂破碎带发育的移动冰丘对桥梁、涵洞、输油管道等工程设施具有不同形式的破坏作用。考虑移动冰丘与工程设施的相互作用,根据野外观测和实验资料设计模型,应用三维有限元数值模拟方法,计算移动冰丘冻胀产生的位移场、应力场和桥墩弯曲应力,分析桥墩破裂机理。结果表明,移动冰丘能够产生11~-21 MPa的轴向应力和15~-31 MPa的主应力,在桥墩周围形成不同规模的应力集中区,导致桥墩发生显著偏移。桥墩的偏移和弯曲能够在桥墩内部产生高达61.9~64.6 MPa的张应力和-45.0~-49.0 MPa的压应力,超过桥墩的强度极限。在粗细桥墩连接部位,外侧形成张应力集中区,最大张应力达26~30 MPa;内侧形成压应力集中区,最大压应力达-25~-28.8 MPa。粗细桥墩连接部位外侧的张应力超过了钢筋混凝土的抗张强度,产生与野外观测资料基本吻合的桥墩破裂和结构破坏。移动冰丘导致桥墩变形破坏的三维有限元数值模拟能够为常年冻土区桥梁工程设计和地质灾害防治提供力学参数和科学依据。  相似文献   
997.
青藏高原地表分类及其东北部辐射通量的二维数值模拟   总被引:2,自引:1,他引:1  
通过对青藏高原地区地表特征的格点分类及沿五道梁站的经向二维中尺度数值模拟,结果发现:青藏高原地区13类地表特征都有,尽管其植被自西北向东南呈带状分布,但仍十分复杂;而其地表特征的这种格点分类为该地区的高分辨数值模式模拟提供了极其有用的下边界条件。地面净辐射通量及其诸分量的模拟结果与观测结果的相当接近与一致表明,该模式具有模拟青藏高原地区地面通量日变化的能力。模拟结果和观测分析还指出:夏天睛天条件下  相似文献   
998.
青藏高原腹地1985年雪灾成因分析   总被引:12,自引:2,他引:10  
分析了1985年10月青藏高原腹地一次特大雪灾的地面气象要素场及卫星辐射场特征,并对生成重雪灾的原因进行了初步探讨。结果表明:此次雪灾的范围与过程,降水量≥8mm与积雪深度≥5cm的范围基本一致,雪盖的后延冷却效应较强,持续时间近5个月;卫星辐射资料的分析计算结果表明,地气系统净辐射收支中行星以照率起入导作用。11月积雪中心区域各因子均达极值-行星反照率距平高达16%,OLR距平值减小-14.6W  相似文献   
999.
青藏高原及其邻近地区旬感热通量基本气候特征   总被引:4,自引:3,他引:1  
利用1979~1995年美国NCEP再分析资料中逐旬感热通量,对高原及其邻近地区旬感热通量季节变化、年际变化特征及冬、夏季感热通量旬异常的年际变化和季节变化进行了分析。结果表明:青藏高原感热通量有明显的季节变化,可分为科季型(10月下旬~3月上旬)和夏季型(3月中旬~10月中旬),感热通量季节变化的明显区在高原北侧的荒原沙漠和南部珠峰一带,高原感热异常多发生在3~15旬和26~36旬。冬季感热通量  相似文献   
1000.
Using monthly mean of surface turbulent heat exchange coefficients calculated based on datafrom four automatic weather stations(AWS)for thermal equilibrium observation in July 1993—September 1996 and of surface conventional measurements,an empirical expression is establishedfor such coefficients.With the expression,the heat exchange coefficients and the components ofsurface thermal source are computed in terms of 1961—1990 monthly mean conventional data from148 stations over the Qinghai-Xizang(Tibetan)Plateau(QXP)and its adjoining areas,and the1961—1990 climatic means are examined.Evidence suggests that the empirical expression is capable of showing the variation of the heatexchange coefficient in a climatic context.The monthly variation of the coefficients averaged overthe QXP is in a range of 4×10~(-3)-5×10~(-3).The wintertime values are bigger in the mountainsthan in the valleys and reversal in summer.Surface effective radiation and sensible heat are thedominant factors of surface total heat.In spring surface sensible heat is enhanced quickly,resulting in two innegligible regions of sensible heat,one in the west QXP and the other innorthern Tibet.with their maximums emerging in different months.In spring and summersensible heat and surface effective radiation are higher in the west than in the east.The effectiveradiation peaks for the east in October—December and the whole QXP and in June and October forthe west.The surface total heat of the plateau maximizes in May.minimizes in December andJanuary,and shows seasonal variation more remarkable in the SW compared to the eastern part.Inthe SW plateau the total heat is much more intense than the eastern counterpart in all the seasonsexcept winter.Under the effect of the sensible heat,the total heat on the SW plateau starts toconsiderably intensify in February,which leads to a predominant heating region in the west,withits center experiencing a noticeable westward migration early in summer and twice pronouncedweakening in July and after October.However,the weakening courses are owing to differentcauses.The total heat over the north of QXP is greatly strengthened in March.thus generatinganother significant thermal region in the plateau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号