首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   79篇
  国内免费   106篇
测绘学   18篇
大气科学   282篇
地球物理   230篇
地质学   133篇
海洋学   17篇
综合类   12篇
自然地理   54篇
  2024年   1篇
  2023年   5篇
  2022年   7篇
  2021年   13篇
  2020年   19篇
  2019年   19篇
  2018年   11篇
  2017年   19篇
  2016年   11篇
  2015年   19篇
  2014年   28篇
  2013年   38篇
  2012年   25篇
  2011年   35篇
  2010年   21篇
  2009年   54篇
  2008年   46篇
  2007年   42篇
  2006年   37篇
  2005年   47篇
  2004年   37篇
  2003年   18篇
  2002年   21篇
  2001年   18篇
  2000年   15篇
  1999年   15篇
  1998年   18篇
  1997年   16篇
  1996年   8篇
  1995年   8篇
  1994年   13篇
  1993年   10篇
  1992年   11篇
  1991年   10篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有746条查询结果,搜索用时 15 毫秒
41.
Twenty soils from the Leuven region were tested in the laboratory with a rainfall simulator. Their texture varied from loam to loamy sand. On the basis of the results obtained, they were classified as a function of the runoff and splash erodibility. For every soil, several properties were determined and tentatively used to explain the classifications based on the runoff and splash erodibility. Significant negative correlations were found between silt content, aggregate stability, C5–10 index, water content at saturation, and cohesion on the one side and erodibility on the other; a positive correlation was found between sand content and erodibility.  相似文献   
42.
The use of cloud tracking techniques and storm identification procedures is proposed in this paper with the aim of predicting the evolution of cloud entities associated with the highest rainfall probability within a given meteorological scenario. Suitable algorithms for this kind of analysis are based on the processing of digital images in the thermal infrared (IR) band from geostationary satellites: a selection of such algorithms is described in some detail together with a few real case applications. Three heavy rainfall events have been selected for this purpose with reference to the extreme meteorological situation observed during Fall 1992 and 1993 over the Mediterranean area. A window from 30 to 60 °N and from 20 °W to 30 °E has been identified for the analysis of data from the radiometer on board the ESA Meteosat platform. In conclusion, the suitability of cloud tracking techniques for predicting the probability of heavy rainfall events is discussed provided that the former are associated with proper modeling of small scale rainfall distribution.  相似文献   
43.
大灰厂跨断层形变资料的地震信息识别   总被引:1,自引:0,他引:1  
李志雄  吴邦素 《地震》1995,(3):222-227
利用具有明显物理意义的断层蠕动模型在充分考虑可能存在的干扰因素影响的基础上,对大灰石台跨断层地形变资料在1989年大同地震前后出现的较大幅度变化进行了异常属性分析。结果表明,这个时期的异常变化尽管叠加有一定的降雨影响,但蠕动模型计算得出的地表变化理论值与实际变化有一定程度的符合,显示出在区域应力场作用下,八宝山断层局部地段在大同地震前后可能存在着与区域应力场应力增强及应力调理有关的构造活动。  相似文献   
44.
Three high erosivity conditions (50 mm hr?1, 100 mm hr?1, and 200 mm hr?1) were generated in a laboratory using a rainfall simulator and coherent soil block samples from fourteen different soil erodibility conditions. The data acquired supports the theoretical contention that soil loss should not increase as a simple linear function of storm intensity. Rather, a variable relationship is caused by the rupturing of surface seals and the changing relative significance of splash, wash and rainwash processes. Slope angle appears to influence soil loss at the higher erosivity conditions of 100 mm hr?1 and 200 mm hr?1 on slopes that were either very steep (> 20°) or very shallow (< 3°), but on moderate slopes the relationship is unclear. Examination of the variation of soil loss with erosivity when soil loss for a specific high erosivity condition is known revealed that conversion and power factors are of doubtful value and little generality. A satisfactory predictive equation, a power curve, is seen to be of value only when comparing rainwash soil loss between the higher erosivity conditions. The relationship is most safely considered as soil and site specific. Where the influence of slope and soil erodibility are disregarded, a strong association between soil loss and rainfall intensity is found. That soil loss, and hence, soil erodibility varies non-uniformly with erosivity is clear. The findings indicate caution is required when comparing conclusions drawn from studies based upon different erosivity conditions.  相似文献   
45.
We present a methodology able to infer the influence of rainfall measurement errors on the reliability of extreme rainfall statistics. We especially focus on systematic mechanical errors affecting the most popular rain intensity measurement instrument, namely the tipping-bucket rain-gauge (TBR). Such uncertainty strongly depends on the measured rainfall intensity (RI) with systematic underestimation of high RIs, leading to a biased estimation of extreme rain rates statistics. Furthermore, since intense rain-rates are usually recorded over short intervals in time, any possible correction strongly depends on the time resolution of the recorded data sets. We propose a simple procedure for the correction of low resolution data series after disaggregation at a suitable scale, so that the assessment of the influence of systematic errors on rainfall statistics become possible. The disaggregation procedure is applied to a 40-year long rain-depth dataset recorded at hourly resolution by using the IRP (Iterated Random Pulse) algorithm. A set of extreme statistics, commonly used in urban hydrology practice, have been extracted from simulated data and compared with the ones obtained after direct correction of a 12-year high resolution (1 min) RI series. In particular, the depth–duration–frequency curves derived from the original and corrected data sets have been compared in order to quantify the impact of non-corrected rain intensity measurements on design rainfall and the related statistical parameters. Preliminary results suggest that the IRP model, due to its skill in reproducing extreme rainfall intensities at fine resolution in time, is well suited in supporting rainfall intensity correction techniques.  相似文献   
46.
It has become established practice during the past 20 years to use high-resolution historical rainfall time series as input to hydrological model packages for detailed simulation of urban drainage systems. However, sufficiently long rain series are rarely available from the exact catchment in question and simulations are hence often based on available rain series from other locations. Extreme rainfall properties of importance to the performance of urban storm drainage systems vary significantly even in regions with only minor physiographic differences. Part of this variation can be explained by regional variations of the mean annual rainfall and the remaining statistical residue can be interpreted as statistical uncertainty.In Denmark, more than 75 high-resolution rain gauges are installed across a total area of 43,000 m. About 40 gauges had sufficiently long records to be included in a comprehensive national investigation where newly developed statistical regionalisation procedures were used to model the regional variation of extreme rainfalls. On this basis, a spreadsheet model was made available for estimation of extreme design rainfalls and the associated uncertainty at any location in the country. Statistics were furthermore computed to classify historical rainfall time series according to the developed regional model, and this makes it possible to assess the uncertainty related with using different historical rain series for simulations at ungauged locations.This research indicates that use of historical point rainfall data at ungauged locations introduces a significant uncertainty that is largely overlooked in today's practice. The engineering recommendation is to select historical rain series based on an evaluation of the local physiographic characteristics (e.g., the mean annual rainfall) and a (pre-defined) desired safety level of the simulations.  相似文献   
47.
This paper presents a practical application of the “hydrologic visibility” concept to select the future site of two planned weather radars of the French national network ARAMIS. This selection was realised by simulating the errors in radar rainfall measurement due to interactions of the radar beam with relief, and to the vertical variation of the radar reflectivity with altitude. Results show the interest of these simulations to optimise the radar location according to the objectives of radar coverage. Beyond these results, this paper highlights aspects interesting for hydrology: this type of simulation can be used to assess the radar measurement quality before initiating a quantitative exploitation of radar data, and before making a comparison or a combination with rain gauge data.  相似文献   
48.
One of the basic requirements for a scientific use of rain data from raingauges, ground and space radars is data quality control. Rain data could be used more intensively in many fields of activity (meteorology, hydrology, etc.), if the achievable data quality could be improved. This depends on the available data quality delivered by the measuring devices and the data quality enhancement procedures. To get an overview of the existing algorithms a literature review and literature pool have been produced. The diverse algorithms have been evaluated to meet VOLTAIRE objectives and sorted in different groups. To test the chosen algorithms an algorithm pool has been established, where the software is collected. A large part of this work presented here is implemented in the scope of the EU-project VOLTAIRE (Validation of multisensors precipitation fields and numerical modeling in Mediterranean test sites).  相似文献   
49.
The paper describes a methodology to detect landslide triggering scenarios in geological homogeneous areas and for some specific landslide categories. In these scenarios, the rainfall–landslide relationship as well as the pluviometric load conditions influencing slope instability have to be investigated.The methodology is applied to an area located in northern Calabria (Italy) and affected by widespread and different slope instability phenomena. Outcropped, fractured, and deeply weathered crystalline rock masses, determining geologic homogeneous conditions, are present. In the same area, suitable and homogeneous climatic features have also been found.According to the methodology adopted, the hydrologic analysis of rainfall time-series is initially carried out notwithstanding historical data concerning landslide mobilization, but using simple models to determine critical pluviometric scenarios for the three landslide categories: shallow, medium-deep, and deep. Landslide-triggering scenarios individualized according to this procedure are less significant as compared to the landslide mobilization detected in the study area by means of historical research and ascribed to the three landslide categories according to geomorphologic analysis.Subsequently, the possible landslide triggering scenarios are outlined by carefully investigating the hydrologic analysis limited to the periods identified according to the historical data.In the study area and approximately for all the areas characterized by the outcrop of fractured and deeply weathered crystalline rocks, significant triggering scenarios can be outlined. In particular, shallow landslide triggers could be activated by rainfall events with intensities exceeding 90 mm/day and/or with amounts exceeding 160 mm. As for medium-deep and deep landslides, triggering mechanisms are more complicated; and effective rainfall contribution must be taken into account compared to groundwater storage. Moreover, a more complex link between deep landslides and precipitation is confirmed.The results obtained to date highlight the potential of this methodology, which enables us to define and progressively improve the knowledge framework by means of a work sequence integrating different disciplinary tools and results.  相似文献   
50.
Rainfall intensities measured at a few stations in Kerala during 2001–2005 using a disdrometer were found to be in reasonable agreement with the total rainfall measured using a manual rain gauge. The temporal distributions of rainfall intensity at different places and during different months show that rainfall is of low intensity (< 10 mm/hr), 65% to 90% of the time. This could be an indication of the relative prevalence of stratiform and cumuliform clouds. Rainfall was of intensity < 5 mm/hr for more than 95% of the time in Kochi in July 2002, which was a month seriously deficient in rainfall, indicating that the deficiency was probably due to the relative absence of cumuliform clouds. Cumulative distribution graphs are also plotted and fitted with the Weibull distribution. The fit parameters do not appear to have any consistent pattern. The higher intensities also contributed significantly to total rainfall most of the time, except in Munnar (a hill station). In this analysis also, the rainfall in Kochi in July 2002 was found to have less presence of high intensities. This supports the hypothesis that the rainfall deficiency was probably caused by the absence of conditions that favoured the formation of cumuliform clouds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号