首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1967篇
  免费   300篇
  国内免费   265篇
测绘学   97篇
大气科学   253篇
地球物理   753篇
地质学   951篇
海洋学   42篇
天文学   5篇
综合类   97篇
自然地理   334篇
  2024年   4篇
  2023年   17篇
  2022年   27篇
  2021年   24篇
  2020年   54篇
  2019年   52篇
  2018年   30篇
  2017年   73篇
  2016年   117篇
  2015年   108篇
  2014年   138篇
  2013年   100篇
  2012年   90篇
  2011年   140篇
  2010年   86篇
  2009年   175篇
  2008年   158篇
  2007年   122篇
  2006年   121篇
  2005年   112篇
  2004年   86篇
  2003年   71篇
  2002年   69篇
  2001年   84篇
  2000年   56篇
  1999年   49篇
  1998年   55篇
  1997年   40篇
  1996年   31篇
  1995年   36篇
  1994年   37篇
  1993年   25篇
  1992年   22篇
  1991年   20篇
  1990年   10篇
  1989年   13篇
  1988年   9篇
  1987年   10篇
  1986年   12篇
  1985年   9篇
  1984年   14篇
  1983年   6篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   1篇
  1954年   1篇
排序方式: 共有2532条查询结果,搜索用时 31 毫秒
991.
An analytical approach is used to investigate dynamic responses of a track system and the poroelastic half-space soil medium subjected to a moving point load under three-dimensional condition. The whole system is divided into two separately formulated substructures, the track sub-system and the ground. The ballast supporting rails and sleepers is placed on the surface of the ground. The rail is modeled by introducing the Green function for an infinitely long Euler beam subjected to the action of the moving point load and the reaction of sleepers represented by a continuous mass. Using the double Fourier transform, the governing equations of motion are then solved analytically in the frequency–wave-number domain. The time domain responses are evaluated by the inverse Fourier transform computation for a certain load velocities. Computed results show that dynamic responses of the soil medium are considerably affected by the fluid phase as well as the load velocity.  相似文献   
992.
Though soil erosion is an important concern in Sri Lanka, there is a dearth of baseline information on soil erosion in many ofits watersheds, which obstructs monitoring of soil erosion and mitigating its effects. In order to assess soil erosion in a critical watershed and to identify its determinants, the Samanalawewa watershed, which contains one of the main hydropower generating reservoirs in Sri Lanka, was selected for this study. Remote-sensing (RS) and geographic information system (GIS) based modeling...  相似文献   
993.
A methodology using modal analysis is developed to evaluate dynamic vertical displacements of a circular flexible foundation resting on soil media subjected to horizontal and rocking motions. The influence of the soil reaction forces on the foundation is considered by introducing modal impedance functions, which can be determined by an efficient procedure with ring elements. The displacements of the foundation can then be easily solved by modal superposition. Parametric studies for modal responses of the flexible foundation indicate that the coupled response of the foundation is significantly influenced by relative stiffness among the foundation and the soil medium, vibration frequency range, foundation mass, and boundary contact conditions. The welded boundary condition should be considered to predict the coupling response while the relaxed boundary condition may be used to predict approximately the vertical displacements. As a foundation with a relative stiffness ratio more than three, it is found that the foundation can be considered as rigid to calculate coupling displacements. For a slightly flexible foundation, considerations of three modes are sufficient enough to obtain accurate foundation responses. Moreover, at low frequencies, the coupling effect due to higher mode can be neglected.  相似文献   
994.
A general formulation and solution procedure are proposed for harmonic response of rigid foundation on multilayered half-space. It is suitable for isotropic as well as anisotropic soil medium. The wave motion equation is formulated in frequency wave-number domain in the state space. A hybrid approach is proposed for its solution, where the precise integration algorithm (PIA) is employed to carry out the integration. Very high accuracy can be achieved. The mixed variable form of wave motion equation enables the assembly of layers simple and convenient. The surface Green׳s function is regarded as rigorous, because it is free from approximations and discretization errors. The algorithm is unconditionally stable. The numerical implementation is based on algebraic matrix operation. Numerical examples of vibration of rigid foundation validate the efficiency and accuracy of the proposed approach.  相似文献   
995.
Settlement of surface structures, which is particularly a private house, due to subsoil liquefaction is not a new issue in geotechnical engineering. It has been happening during earthquakes in liquefaction-prone areas since many years ago. However, to date no reliable measure against this problem with reasonable cost has been proposed to people. In this paper, results of a series of 1-g shaking table tests which have been conducted to evaluate performance of a possible mitigation against this problem are presented. The proposed mitigation herein is installation of sheet-pile walls around the foundation. In order to reduce the cost of mitigation, sheet-piling with gap and half-length sheet-piling were examined. The experiments were conducted in different ground water levels. It is found out that installing sheet-pile walls in relatively low ground water level can stop settlement of structures completely. Sheet-piling with gaps delays initiation of settlement but it may increase the ultimate settlement of structure. In addition, it is found that formation of a water film under the building׳s foundation is the governing mechanism of post-shaking settlement of structures.  相似文献   
996.
The mechanism of earthquake energy input to building structures is clarified by considering the surface ground amplification and soil–structure interaction. The earthquake input energies to superstructures, soil–foundation systems and total swaying–rocking system are obtained by taking the corresponding appropriate free bodies into account and defining the energy transfer functions. It has been made clear that, when the ground surface motion is white, the input energy to the swaying–rocking model is constant regardless of the soil property (input energy constant property). The upper bound of earthquake input energy to the swaying–rocking model is derived for the model including the surface ground amplification by taking full advantage of the above-mentioned input energy constant property and introducing the envelope function for the transfer function of the surface ground amplification. Extension of the theory to a general earthquake ground motion model at the engineering bedrock is also made by taking full advantage of the above-mentioned input energy constant property.  相似文献   
997.
Mexico City high plasticity clays exhibit a small degree of nonlinearity for shear strains as large as 0.1%, which leads to both moderate shear stiffness degradation and small to medium damping increment, even for long duration subduction strong ground motions, such as the 8.1Mw 1985Michoacan earthquake. Nonetheless, current seismic design criteria of strategic infrastructure used worldwide have striven for having larger return periods for establishing the seismic environment, considering recent large magnitude (M>8.5Mw) events. This paper presents the study of the seismic response of typical high plasticity clays found in the so-called Texcoco Lake, in the surrounding of Mexico City valley, for larger to extreme earthquakes. The shear wave velocity profile was characterized using a down-hole test. The seismic environment was established from a set of uniform hazard response spectra developed for a nearby rock outcrop for return periods of 125, 250, 475 and 2475 years. A time-domain spectral matching was used to develop acceleration time histories compatible with each uniform hazard response spectrum. Both frequency and time domain site response analyses were carried out considering each seismic scenario. Ground nonlinearities were clearly observed in the soil response during extreme ground shaken, which increases rapidly with the return period. This fact must be taken into account to avoid costly and potentially unsafe seismic designs.  相似文献   
998.
999.
Advances in Earth Observation (EO) technology, particularly over the last two decades, have shown that soil moisture content (SMC) can be measured to some degree or other by all regions of the electromagnetic spectrum, and a variety of techniques have been proposed to facilitate this purpose.In this review we provide a synthesis of the efforts made during the last 20 years or so towards the estimation of surface SMC exploiting EO imagery, with a particular emphasis on retrievals from microwave sensors. Rather than replicating previous overview works, we provide a comprehensive and critical exploration of all the major approaches employed for retrieving SMC in a range of different global ecosystems. In this framework, we consider the newest techniques developed within optical and thermal infrared remote sensing, active and passive microwave domains, as well as assimilation or synergistic approaches. Future trends and prospects of EO for the accurate determination of SMC from space are subject to key challenges, some of which are identified and discussed within.It is evident from this review that there is potential for more accurate estimation of SMC exploiting EO technology, particularly so, by exploring the use of synergistic approaches between a variety of EO instruments. Given the importance of SMC in Earth’s land surface interactions and to a large range of applications, one can appreciate that its accurate estimation is critical in addressing key scientific and practical challenges in today’s world such as food security, sustainable planning and management of water resources. The launch of new, more sophisticated satellites strengthens the development of innovative research approaches and scientific inventions that will result in a range of pioneering and ground-breaking advancements in the retrievals of soil moisture from space.  相似文献   
1000.
The European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) Level 2 soil moisture and the new L3 product from the Barcelona Expert Center (BEC) were validated from January 2010 to June 2014 using two in situ networks in Spain. The first network is the Soil Moisture Measurement Stations Network of the University of Salamanca (REMEDHUS), which has been extensively used for validating remotely sensed observations of soil moisture. REMEDHUS can be considered a small-scale network that covers a 1300 km2 region. The second network is a large-scale network that covers the main part of the Duero Basin (65,000 km2). At an existing meteorological network in the Castilla y Leon region (Inforiego), soil moisture probes were installed in 2012 to provide data until 2014. Comparisons of the temporal series using different strategies (total average, land use, and soil type) as well as using the collocated data at each location were performed. Additionally, spatial correlations on each date were computed for specific days. Finally, an improved version of the Triple Collocation (TC) method, i.e., the Extended Triple Collocation (ETC), was used to compare satellite and in situ soil moisture estimates with outputs of the Soil Water Balance Model Green-Ampt (SWBM-GA). The results of this work showed that SMOS estimates were consistent with in situ measurements in the time series comparisons, with Pearson correlation coefficients (R) and an Agreement Index (AI) higher than 0.8 for the total average and the land-use averages and higher than 0.85 for the soil-texture averages. The results obtained at the Inforiego network showed slightly better results than REMEDHUS, which may be related to the larger scale of the former network. Moreover, the best results were obtained when all networks were jointly considered. In contrast, the spatial matching produced worse results for all the cases studied.These results showed that the recent reprocessing of the L2 products (v5.51) improved the accuracy of soil moisture retrievals such that they are now suitable for developing new L3 products, such as the presented in this work. Additionally, the validation based on comparisons between dense/sparse networks and satellite retrievals at a coarse resolution showed that temporal patterns in the soil moisture are better reproduced than spatial patterns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号