首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   356篇
  免费   73篇
  国内免费   112篇
地球物理   274篇
地质学   187篇
海洋学   68篇
天文学   1篇
综合类   6篇
自然地理   5篇
  2023年   5篇
  2022年   8篇
  2021年   10篇
  2020年   14篇
  2019年   22篇
  2018年   26篇
  2017年   19篇
  2016年   29篇
  2015年   31篇
  2014年   23篇
  2013年   36篇
  2012年   25篇
  2011年   29篇
  2010年   21篇
  2009年   27篇
  2008年   22篇
  2007年   28篇
  2006年   23篇
  2005年   20篇
  2004年   19篇
  2003年   19篇
  2002年   20篇
  2001年   11篇
  2000年   7篇
  1999年   10篇
  1998年   10篇
  1997年   4篇
  1996年   8篇
  1995年   1篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1977年   1篇
排序方式: 共有541条查询结果,搜索用时 250 毫秒
531.
小应变硬化土模型参数的确定与敏感性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
地下工程施工引起的土体扰动区可分为剧烈扰动区、扰动区、微扰动区和未扰动区。为全面反映土体在扰动下的应力路径和力学响应,必须考虑全应变范围的土体特性,尤其是小应变范围内的力学响应,因此对小应变硬化土本构模型关键参数(初始剪切模量和剪应变阀值)的确定方法进行介绍。开展上海典型软土的三轴固结排水剪切试验和固结试验研究,给出确定上海软土小应变硬化土模型(HSSmall)参数的方法,建议采用原位测试的方法确定土体的初始弹性模量。基于土单元数值模拟进行初始弹性模量和剪应变阀值的参数敏感性分析。随着初始弹性模量的增大,初始压缩曲线与卸载-再压缩曲线的斜率均增大。由于对应的回弹模量不变,初始弹性模量与回弹模量的差值增大,应变与偏应力试验曲线的回滞环宽度也随之增大。随着剪应变阀值的增大,初始压缩曲线和再压缩曲线的近似直线段增长,在同样剪应力情况下,土体的应变值减小,土体保持初始弹性模量刚度的区间增大。  相似文献   
532.
Qu  Zhe  Gong  Ting  Li  Qiqi  Wang  Tao 《地震工程与工程振动(英文版)》2019,18(2):315-330
The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns.  相似文献   
533.
A numerical study of unobstructed content sliding within several low‐to‐midrise reinforced concrete cantilever wall buildings designed to Wellington conditions in New Zealand is performed to validate the belief that increasing a building's strength and/or stiffness would result in more severe sliding response. It was shown that contents within stronger buildings experienced larger sliding response. If the building was designed to be strong, the sliding response of contents with a friction coefficient of 0.1 was smaller in stiffer buildings compared with those in flexible buildings. However, the trends start reversing with an increase in friction coefficient or a decrease in building strength. Overall, content sliding is not necessarily more severe in stiffer buildings, and in many cases, the opposite is true. This study's findings were compared against an existing parametric equation for estimating the maximum sliding displacement. This equation, which was originally derived for contents located within elastic frame buildings, was found to be more efficient than considering total floor accelerations alone but was underconservative by a mean of 17% for yielding multistorey buildings. A design procedure considering content sliding using the parametric equation and an example are provided. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
534.
This paper presents a passive vertical quasi‐zero‐stiffness vibration isolator intended for relatively small objects. The present isolator has features of compactness, long stroke, and adjustability to various load capabilities. To realize these features, we use constant‐force springs, which sustain constant load regardless of their elongation, and propose a variable ellipse curve mechanism that is inspired by the principle of ellipsographs. The variable ellipse curve mechanism can convert the restoring force of the horizontally placed constant‐force springs to the vertical restoring force of the vibration isolator. At the same time as converting the direction, the vertical restoring force can be adjusted by changing the ratio of the semi‐minor axis to the semi‐major one of the ellipse. In this study, a prototype of a class of quasi‐zero‐stiffness vibration isolator with the proposed variable ellipse curve mechanism is created. Shaking table tests are performed to demonstrate the efficacy of the present mechanism, where the prototype is subjected to various sinusoidal and earthquake ground motions. It is demonstrated through the shaking table tests that the prototype can reduce the response acceleration within the same specified tolerance even when the mass of the vibration isolated object is changed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
535.
This paper presents a procedure for seismic design of reinforced concrete structures, in which performance objectives are formulated in terms of maximum accepted mean annual frequency (MAF) of exceedance, for multiple limit states. The procedure is explicitly probabilistic and uses Cornell's like closed‐form equations for the MAFs. A gradient‐based constrained optimization technique is used for obtaining values of structural design variables (members' section size and reinforcement) satisfying multiple objectives in terms of risk levels. The method is practically feasible even for real‐sized structures thanks to the adoption of adaptive equivalent linear models where element‐by‐element stiffness reduction is performed (2 linear analyses per intensity level). General geometric and capacity design constraints are duly accounted for. The procedure is applied to a 15‐storey plane frame building, and validation is conducted against results in terms of drift profiles and MAF of exceedance, obtained by multiple‐stripe analysis with records selected to match conditional spectra. Results show that the method is suitable for performance‐based seismic design of RC structures with explicit targets in terms of desired risk levels.  相似文献   
536.
Failure of masonry structures generally occurs via specific collapse mechanisms which have been well documented. Using rocking dynamics, equations of motion have been derived for a number of different failure mechanisms ranging from the simple overturning of a single block to more complicated mechanisms. However, most of the equations of motion derived thus far assume that the structures can be modelled as rigid bodies rocking on rigid interfaces with an infinite compressive strength—which is not always the case. In fact, crushing of masonry—commonly observed in larger scale constructions and vertically restrained walls—can lead to a reduction in the dynamic capacity of these structures. This paper rederives the rocking equation of motion to account for the influence of flexible interfaces, characterized by a specific interface stiffness as well as finite compressive strength. The interface now includes a continually shifting rotation point, the location of which depends not only on the material properties of the interface but also on its geometry. Expressions have thus also been derived for interfaces of different geometries, and parametric studies conducted to gauge their influence on dynamic response. The new interface formulations are also implemented within a new analytical modelling tool that provides a novel approach to the dynamic analysis of masonry collapse mechanisms. Finally, this tool is exemplified, along with the importance of the interface formulation, by evaluating the collapse of the Dharahara Tower in Kathmandu, which was almost completely destroyed during the 2015 Gorkha earthquake.  相似文献   
537.
林诚鑫  黄维  刘海笑 《海洋工程》2012,30(3):97-104
在循环载荷作用下,合成纤维系缆的应力应变关系表现出明显的非线性特性,直接影响系泊缆绳的动力响应。如何针对其在循环载荷作用下的应力应变关系进行准确的定量描述是有关绷紧式系泊系统设计的关键问题。国内外研究者之前的研究不能反映缆绳的载荷历史、蠕变特性以及刚度变化过程,因此提出一个粘弹性粘塑性模型来描述合成纤维系缆的应力应变关系。本模型能够反映合成纤维缆绳的时间变化特性以及在整个加载—卸载过程中的刚度变化。此外,提出了明确的参数确定方法及步骤,基于简单的蠕变实验可以确定模型的各个参数。将两种载荷条件下聚酯缆绳的实验结果与模型结果进行对比,二者吻合较好,证明了模型的有效性和可靠性。本研究对于绷紧式系泊系统的研发和工程应用具有重要意义。  相似文献   
538.
An objective of this paper is to demonstrate that the small strain model developed by the authors can be incorporated into the conventional kinematic hardening plasticity framework to predict pre‐failure defor mations. The constitutive model described in this paper is constituted by three elliptical yield surfaces in triaxial stress space. Two inner surfaces are rotated ellipses of the same shape, representing the boundaries of the linear elastic and small strain regions, while the third surface is the modified Cam clay large‐scale yield surface. Within the linear elastic region, the soil behaviour is elastic with cross‐coupling between the shear and volumetric stress–strain components. Within the small strain region, the soil behaviour is elasto‐plastic, described by the kinematic hardening rule with an infinite number of loading surfaces defined by the incremental energy criterion. Within the large‐scale yield surface, the soil behaviour is elasto‐plastic, described by kinematic and isotropic hardening of the small strain region boundary. Since the yield surfaces have different shapes, the uniqueness of the plastic loading condition imposes a restriction on the ratio between their semi‐diameters. The model requires 12 parameters, which can be determined from a single consolidated undrained triaxial compression test. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   
539.
To calculate the dynamic-stiffness matrix at the structure–medium interface of an unbounded medium for the range of frequencies of interest, the consistent infinitesimal finite-element cell method based on finite elements is developed. The derivation makes use of similarity and finite-element assemblage, yielding a non-linear first-order ordinary differential equation in frequency. The asymptotic expansion for high frequency yields the boundary condition satisfying the radiation condition. In an application only the structure–medium interface is discretized resulting in a reduction of the spatial dimension by one. The boundary condition on the free surface is satisfied automatically. The consistent infinitesimal finite-element cell method is exact in the radial direction and converges to the exact solution in the finite-element sense in the circumferential directions. Excellent accuracy results.  相似文献   
540.
基于"强水平缝弱竖向缝"的设计理念,对采用软钢阻尼器直接连接腹板墙和翼缘墙的L形装配式剪力墙试件进行低周反复荷载试验。试验结果表明试件的整体工作性能良好,其位移延性系数均大于2.6,具有良好的变形性能;阻尼器平面内工作性能良好,能够实现屈服耗能。设计中应考虑阻尼器的屈服力对单片墙肢轴压比的影响,以满足规范对试件轴压比的要求,同时避免试件在两个加载方向的承载力产生较大差异。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号