首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1040篇
  免费   267篇
  国内免费   26篇
测绘学   12篇
大气科学   15篇
地球物理   875篇
地质学   217篇
海洋学   81篇
天文学   6篇
综合类   11篇
自然地理   116篇
  2024年   13篇
  2023年   5篇
  2022年   7篇
  2021年   63篇
  2020年   83篇
  2019年   35篇
  2018年   53篇
  2017年   51篇
  2016年   48篇
  2015年   48篇
  2014年   62篇
  2013年   116篇
  2012年   37篇
  2011年   41篇
  2010年   44篇
  2009年   33篇
  2008年   74篇
  2007年   54篇
  2006年   63篇
  2005年   32篇
  2004年   37篇
  2003年   39篇
  2002年   40篇
  2001年   23篇
  2000年   38篇
  1999年   25篇
  1998年   25篇
  1997年   26篇
  1996年   28篇
  1995年   8篇
  1994年   12篇
  1993年   12篇
  1992年   12篇
  1991年   4篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   8篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1333条查询结果,搜索用时 17 毫秒
41.
Understanding flow pathways and mechanisms that generate streamflow is important to understanding agrochemical contamination in surface waters in agricultural watersheds. Two environmental tracers, δ18O and electrical conductivity (EC), were monitored in tile drainage (draining 12 ha) and stream water (draining nested catchments of 6‐5700 ha) from 2000 to 2008 in the semi‐arid agricultural Missouri Flat Creek (MFC) watershed, near Pullman Washington, USA. Tile drainage and streamflow generated in the watershed were found to have baseline δ18O value of ?14·7‰ (VSMOW) year round. Winter precipitation accounted for 67% of total annual precipitation and was found to dominate streamflow, tile drainage, and groundwater recharge. ‘Old’ and ‘new’ water partitioning in streamflow were not identifiable using δ18O, but seasonal shifts of nitrate‐corrected EC suggest that deep soil pathways primarily generated summer streamflow (mean EC 250 µS/cm) while shallow soil pathways dominated streamflow generation during winter (EC declining as low as 100 µS/cm). Using summer isotopic and EC excursions from tile drainage in larger catchment (4700‐5700 ha) stream waters, summer in‐stream evaporation fractions were estimated to be from 20% to 40%, with the greatest evaporation occurring from August to October. Seasonal watershed and environmental tracer dynamics in the MFC watershed appeared to be similar to those at larger watershed scales in the Palouse River basin. A 0·9‰ enrichment, in shallow groundwater drained to streams (tile drainage and soil seepage), of δ18O values from 2000 to 2008 may be evidence of altered precipitation conditions due to the Pacific Decadal Oscillation (PDO) in the Inland Northwest. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
42.
To predict future river flows, empirical trend projection (ETP) analyses and extends historic trends, while hydroclimatic modelling (HCM) incorporates regional downscaling from global circulation model (GCM) outputs. We applied both approaches to the extensively allocated Oldman River Basin that drains the North American Rocky Mountains and provides an international focus for water sharing. For ETP, we analysed monthly discharges from 1912 to 2008 with non‐parametric regression, and extrapolated changes to 2055. For modelling, we refined the physical models MTCLIM and SNOPAC to provide water inputs into RIVRQ (river discharge), a model that assesses the streamflow regime as involving dynamic peaks superimposed on stable baseflow. After parameterization with 1960–1989 data, we assessed climate forecasts from six GCMs: CGCM1‐A, HadCM3, NCAR‐CCM3, ECHAM4 and 5 and GCM2. Modelling reasonably reconstructed monthly hydrographs (R2 about 0·7), and averaging over three decades closely reconstructed the monthly pattern (R2 = 0·94). When applied to the GCM forecasts, the model predicted that summer flows would decline considerably, while winter and early spring flows would increase, producing a slight decline in the annual discharge (?3%, 2005–2055). The ETP predicted similarly decreased summer flows but slight change in winter flows and greater annual flow reduction (?9%). The partial convergence of the seasonal flow projections increases confidence in a composite analysis and we thus predict further declines in summer (about ? 15%) and annual flows (about ? 5%). This composite projection indicates a more modest change than had been anticipated based on earlier GCM analyses or trend projections that considered only three or four decades. For other river basins, we recommend the utilization of ETP based on the longest available streamflow records, and HCM with multiple GCMs. The degree of correspondence from these two independent approaches would provide a basis for assessing the confidence in projections for future river flows and surface water supplies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
43.
《Comptes Rendus Geoscience》2018,350(4):141-153
This study deals with the evolution of the hydrological cycle over France during the 21st century. A large multi-member, multi-scenario, and multi-model ensemble of climate projections is downscaled with a new statistical method to drive a physically-based hydrological model with recent improvements. For a business-as-usual scenario, annual precipitation changes generally remain small, except over southern France, where decreases close to 20% are projected. Annual streamflows roughly decrease by 10% (±20%) on the Seine, by 20% (±20%) on the Loire, by 20% (±15%) on the Rhone and by 40% (±15%) on the Garonne. Attenuation measures, as implied by the other scenarios analyzed, lead to less severe changes. However, even with a scenario generally compatible with a limitation of global warming to two degrees, some notable impacts may still occur, with for example a decrease in summer river flows close to 25% for the Garonne.  相似文献   
44.
Comparing with lithofacies palaeogeography of several great plains, the authors analyzed four great plains in Quaternary diastrophism, the sedimentary facies, sedimentary environment and their evolution from the independent embryonic and river system of ancient Heilongjiang finally to the Halar highland, Songnen Plain, Sanjiang Plain, the Xingkai Lake Plain and various river systems, collected the unification outside the system of Heilongjiang River to release into the sea, south ancient Xialiao River finally piracy Dongliao River, Xialiao River had released into the sea the ancient water law vicissitude and the evolved rule.  相似文献   
45.
A long-term water balance model has been developed to predict the hydrological effects of land-use change (especially forest clearing) in small experimental catchments in the south-west of Western Australia. This small catchment model has been used as the building block for the development of a large catchment-scale model, and has also formed the basis for a coupled water and salt balance model, developed to predict the changes in stream salinity resulting from land-use and climate change. The application of the coupled salt and water balance model to predict stream salinities in two small experimental catchments, and the application of the large catchment-scale model to predict changes in water yield in a medium-sized catchment that is being mined for bauxite, are presented in Parts 2 and 3, respectively, of this series of papers. The small catchment model has been designed as a simple, robust, conceptually based model of the basic daily water balance fluxes in forested catchments. The responses of the catchment to rainfall and pan evaporation are conceptualized in terms of three interdependent subsurface stores A, B and F. Store A depicts a near-stream perched aquifer system; B represents a deeper, permanent groundwater system; and F is an intermediate, unsaturated infiltration store. The responses of these stores are characterized by a set of constitutive relations which involves a number of conceptual parameters. These parameters are estimated by calibration by comparing observed and predicted runoff. The model has performed very well in simulations carried out on Salmon and Wights, two small experimental catchments in the Collie River basin in south-west Western Australia. The results from the application of the model to these small catchments are presented in this paper.  相似文献   
46.
The anion compositions (SO24, HCO3 and Cl) of runoff from the Haut Glacier d'Arolla, Switzerland and Austre Brøggerbreen, Svalbard are compared to assess whether or not variations in water chemistry with discharge are consistent with current understanding of the subglacial drainage structure of warm- and polythermal-based glaciers. These glacial catchments have very different bedrocks and the subglacial drainage structures are also believed to be different, yet the range of anion concentrations show considerable overlap for SO2−4 and HCO3. Concentrations of Cl are higher at Austre Brøggerbreen because of the maritime location of the glacier. Correcting SO2−4 for the snowpack component reveals that the variation in non-snowpack SO2−4 with discharge and with HCO3 is similar to that observed at the Haut Glacier d'Arolla. Hence, if we assume that the provenance of the non-snowpack SO2−4 is the same in both glacial drainage systems, a distributed drainage system also contributes to runoff at Austre Brøggerbreen. We have no independent means of testing the assumption at present. The lower concentrations of non-snowpack SO2−4 at Austre Brøggerbreen may suggest that a smaller proportion of runoff originates from a distributed drainage system than at the Haut Glacier d'Arolla.  相似文献   
47.
Repeated dye tracer tests were undertaken from individual moulins at Haut Glacier d'Arolla, Switzerland, over a number of diurnal discharge cycles during the summers of 1989–1991. It was hoped to use the concepts of at-a-station hydraulic geometry to infer flow conditions in subglacial channels from the form of the velocity–discharge relationships derived from these tests. The results, however, displayed both clockwise and anticlockwise velocity–discharge hysteresis, in addition to the simple power function relationship assumed in the hydraulic geometry approach. Clockwise hysteresis seems to indicate that a moulin drains into a small tributary channel rather than directly into an arterial channel, and that discharges in the two channels vary out of phase with each other. Anticlockwise hysteresis is accompanied by strong diurnal variations in the value of dispersivity derived from the dye breakthrough curve, and is best explained by hydraulic damming of moulins or sub/englacial passageways. Despite the complex velocity–discharge relationships observed, some indication of subglacial flow conditions may be obtained if tributary channels comprise only a small fraction of the drainage path and power function velocity–discharge relationships are derived from dye injections conducted during periods when the supraglacial discharge entering the moulin and the bulk discharge vary in phase. Analyses based on this premise suggest that both open and closed channel flow occur beneath Haut Glacier d'Arolla, and that flow conditions are highly variable at and between sites.  相似文献   
48.
I. MUZIK 《水文研究》1996,10(10):1401-1409
The concept of a spatially distributed unit hydrograph is based on the fact that the unit hydrograph can be derived from the time–area curve of a watershed by the S-curve method. The time–area diagram is a graph of cumulative drainage area contributing to discharge at the watershed outlet within a specified time of travel. Accurate determination of the time–area diagram is made possible by using a GIS. The GIS is used to describe the connectivity of the links in the watershed flow network and to calculate distances and travel times to the watershed outlet for various points within the watershed. Overland flow travel times are calculated by the kinematic wave equation for time to equilibrium; channel flow times are based on the Manning and continuity equations. To account for channel storage, travel times for channel reaches are increased by a percentage depending on the channel reach length and geometry. With GIS capability for rainfall mapping, the assumption of a uniform spatial rainfall distribution is no longer necessary; hence the term, spatially distributed unit hydrograph. An example of the application for the Waiparous Creek in the Alberta Foothills is given. IDRISI is used to develop a simple digital elevation model of the 229 km2 watershed, using 1 km × 1 km grid cells. A grid of flow directions is developed and used to create an equivalent channel network. Excess rainfall for each 1 km × 1 km cell is individually computed by the Soil Conservation Service (SCS) runoff curve method and routed through the equivalent channel network to obtain the time–area curve. The derived unit hydrograph gave excellent results in simulating an observed flood hydrograph. The distributed unit hydrograph is no longer a lumped model, since it accounts for internal distribution of rainfall and runoff. It is derived for a watershed without the need for observed rainfall and discharge data, because it is essentially a geomorphoclimatic approach. As such, it allows the derivation of watershed responses (hydrographs) to inputs of various magnitudes, thus eliminating the assumption of proportionality of input and output if needed. The superposition of outputs is retained in simulating flood hydrographs by convolution, since it has been shown that some non-linear systems satisfy the principle of superposition. The distributed unit hydrograph appears to be a very promising rainfall runoff model based on GIS technology.  相似文献   
49.
随着传感器和其他数据采集技术的不断进步以及对地观测网络的建设和启动,空间数据的高性能处理和分析成为摆在地学工作者面前的瓶颈。本文以此为出发点,按照不同地学领域(陆地、大气、海洋)的空间数据载体的形态的不同,将空间数据划分为反映固态基质信息的陆地空间数据,反映液态基质信息的陆地水文空间数据,反映液态基质信息的海洋流体空间数据和反映气态基质信息的大气流体空间数据四类,并对每类数据的最小单元问题进行了初步的分析。本文详细阐述了地学空间计算的涵义,并根据计算行为模式及计算的侧重点的不同,将地学计算过程分为深度计算过程与主动计算过程(即“数据→特征→知识”的一般计算过程),并就此进行了阐释。以基于特征的遥感信息提取和目标识别工作为例,对上述理论进行了说明和验证。最后对空间数据计算模式相关问题进行了总结,并对以后的研究做了展望。  相似文献   
50.
南水北调西线一期工程调水区所涉及的6条河流(泥曲、达曲、色曲、杜柯河、玛柯河、阿柯河)坝址处均无实测的径流资料,开展该地区的水文研究属于无资料水文预报问题(PUBs)。利用年径流量的变差系数Cv值、年际变化绝对比率P和不均匀系数α对坝址下游的朱倭、朱巴、足木足、绰斯甲4站的实测年径流的年际变化进行分析,计算结果为各坝址径流年际变差系数Cv为0.15~0.26,表明调水区的多年径流量变化不大;年际变化绝对比率P为1.88~3.00,其中朱倭站的径流年际变化最大,最大径流量是最小径流量的3倍,绰斯甲站的最大径流量是最小径流量的1.88倍,4站的径流变化都不剧烈;径流不均匀系数α为0.58~0.75,表明该流域径流量的年际变化较为均匀;利用水文比拟法对坝址处的径流进行了计算,并根据R/S分析法对坝址处径流序列的未来趋势进行了初步分析,各坝址处的年径流序列的赫斯特系数均大于0.5,说明各径流序列的未来趋势具有持续性,即未来趋势与历史呈正相关,6个调水坝址中只有扎洛和克柯处的径流未来是减少的,其余坝址处径流都是增加的,这样西线一期工程调水区的河流有利于水资源的可持续开发利用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号