首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   539篇
  免费   144篇
  国内免费   129篇
测绘学   5篇
大气科学   158篇
地球物理   220篇
地质学   220篇
海洋学   38篇
天文学   4篇
综合类   21篇
自然地理   146篇
  2024年   4篇
  2023年   9篇
  2022年   16篇
  2021年   20篇
  2020年   31篇
  2019年   34篇
  2018年   34篇
  2017年   29篇
  2016年   14篇
  2015年   24篇
  2014年   41篇
  2013年   54篇
  2012年   39篇
  2011年   43篇
  2010年   31篇
  2009年   41篇
  2008年   41篇
  2007年   49篇
  2006年   31篇
  2005年   25篇
  2004年   27篇
  2003年   20篇
  2002年   16篇
  2001年   12篇
  2000年   16篇
  1999年   10篇
  1998年   14篇
  1997年   20篇
  1996年   16篇
  1995年   13篇
  1994年   14篇
  1993年   8篇
  1992年   7篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
排序方式: 共有812条查询结果,搜索用时 609 毫秒
81.
以云南省蒙自断陷盆地东山山区典型岩溶洼地为研究区,通过野外采集土壤样品与实验室测试分析相结合的方法,运用稳定同位素技术研究旱季不同深度土壤水氢氧同位素组成,揭示区内土壤水氢氧同位素时空变化特征,为进一步研究云南断陷盆地山区土壤水分运移机制和当地农业合理利用和管理水资源提供科学依据。结果表明:(1)土壤水δD、δ18O同位素值的变化范围分别为-128.3‰~-27.6‰和-17.5‰~2.5‰,平均值分别为-96.1‰±20.7‰和-12.3‰±3.7‰,降雨转化为土壤水和水分在土壤中重新分布时发生一定程度的氢氧同位素分馏。(2)旱季两个月份土壤水氢氧同位素组成发生变化,4月份土壤水δD、δ18O同位素平均值分别为-86.3‰±23.83‰和-10.6‰±4.3‰,显著高于2月份(δD:-106.1‰±9.5‰;δ18O:-14.1‰±1.6‰)(p<0.05),主要和4月份土壤水的蒸发作用强烈有关。(3)在空间上,坡地与洼地之间土壤水氢氧同位素组成存在差异,2月份坡地与洼地之间土壤水δD、δ18O值差异显著(p<0.05),洼地土壤水δD、δ18O比坡地偏轻;4月份坡地与洼地之间土壤水δD、δ18O值差异不显著(p>0.05)。(4)土壤垂直剖面方向上土壤水δD、δ18O值随着土壤深度的增加而减小,浅层土壤水δ18O和深层土壤水δ18O存在显著差异,2月份浅层土壤水δ18O比深层土壤水δ18O偏正2.8‰,4月份浅层土壤水δ18O比深层土壤水δ18O偏正10.5‰。   相似文献   
82.
To this day, field capacity (FC) is rarely defined in the context of soil properties, and the use of non-physical simplistic models is the common way to normalize water content at FC. In this study, the problem of water drainage redistribution in a soil column with and without the presence of evaporation (EV) was extensively studied. Analytical solutions for the Richards equation were established for the case of water drainage redistribution through a deeply wetted soil water column with and without EV at FC conditions. Water retention and depth evolution curves were plotted first, using different EV values of (2 mmday, 5 mmday and 8 mmday) and second, for different drainage redistribution durations of (1 day, 4 days and 6 days) where EV was set to zero for the case with no EV or to a fixed value of 5 mmday for the case with EV. The results suggest that EV plays a significant role in soil water drainage suggesting that, in the presence of EV, the FC drying front reaches much higher depths in the soil water profile than if EV is turned off. It was also concluded that FC reaches deeper depths faster the stronger EV is acting at the surface of a soil water column. Additionally, the results suggest that the texture of the soil receiving drainage controls the amount of water available for EV and as a result, EV was found to play a stronger role the smaller the hydraulic conductivity of the soil is.  相似文献   
83.
In cold climates, the process of freezing–thawing significantly affects the ground surface heat balance and water balance. To better understand the mechanism of evaporation from seasonally frozen soils, we performed field experiments at different water table depths on vegetated and bare ground in a semiarid region in China. Soil moisture and temperature, air temperature, precipitation, and water table depths were measured over a 5‐month period (November 1, 2016, to March 14, 2017). The evaporation, which was calculated by a mass balance method, was high in the periods of thawing and low in the periods of freezing. Increased water table depth in the freezing period led to high soil moisture in the upper soil layer, whereas lower initial groundwater levels during freezing–thawing decreased the cumulative evaporation. The extent of evaporation from the bare ground was the same in summer as in winter. These results indicate that a noteworthy amount of evaporation from the bare ground is present during freezing–thawing. Finally, the roots of Salix psammophila could increase the soil temperature. This study presents an insight into the joint effects of soil moisture, temperature, ground vegetation, and water table depths on the evaporation from seasonally frozen soils. Furthermore, it also has important implications for water management in seasonally frozen areas.  相似文献   
84.
Songjun Han  Fuqiang Tian 《水文研究》2018,32(19):3051-3058
Natural evaporation occurs with water transportation from an unsaturated land surface into an unsaturated atmosphere. The subprocesses at the land surface and in the atmosphere are one‐sidedly emphasized in the Penman approach and the complementary principle, in which the ratio of actual evaporation to the Penman potential evaporation is expressed as a function of the wetness state of the land surface and the atmosphere, respectively. The Penman approach and complementary principle can be integrated for completely conceptualizing the evaporation process, by expressing the evaporation ratio as a function of both the land surface and atmospheric wetness. The integrated approach has the potential to increase the accuracy of evaporation estimation while reducing the burdens of parameterization.  相似文献   
85.
土壤蒸发和植被蒸腾遥感估算与验证   总被引:1,自引:0,他引:1  
地表蒸散发是土壤—植被—大气系统中能量和水循环的重要环节,它包括土壤、水体和植被表面的蒸发,以及植被蒸腾。随着地表参数多源遥感产品的快速发展,利用不同地表参数遥感产品估算地表蒸散发以及其组分土壤蒸发和植被蒸腾成为日常监测越来越便利,监测尺度已从单站扩展到田块、区域乃至全球。目前地表蒸散发双层遥感估算模型按照建模机理的不同可分为:系列模型、平行模型、基于特征空间的模型、结合传统方法的模型以及数据同化方法。本文从模型构建物理机制、模型驱动数据以及模型输出结果验证等方面总结了上述模型的发展历史和现状,并指出在模型结构与参数化方案的优化、高分辨率模型驱动数据的发展、土壤蒸发和植被蒸腾像元尺度"地面真值"的获取等方面都仍需进一步完善。  相似文献   
86.
The relationship between potential evaporation and arealevaporation is assessed using a closed-box model of the convectiveboundary layer (CBL). Potential evaporation is defined as theevaporation that would occur from a hypothetical saturated surface,with radiative properties similar to those of the whole area, and smallenough that the excess moisture flux does not modify thecharacteristics of the CBL. It is shown that the equilibrium rate ofpotential evaporation is given by Ep0=E0,where E0 is the equilibrium evaporation (radiative termof the Penman formula), and is a coefficient similar to thePriestley-Taylor coefficient. Its expression is , where is the areal surface resistance, ra is the localaerodynamic resistance, and is the dimensionless slope of thesaturation specific humidity at the temperature of the air. Itscalculated value is around 1 for any saturated surface surrounded bywater, about 1.3 for saturated grass surrounded by well-watered grassand can be greater than 3 over saturated forest surrounded by forest.The formulation obtained provides a theoretical basis to the overallmean value of 1.26, empirically found by Priestley and Taylor for thecoefficient . Examining, at the light of this formulation, thecomplementary relationship between potential and actual evaporation(as proposed by Bouchet and Morton), it appears that the sum ofthese two magnitudes is not a constant at equilibrium, but depends onthe value of the areal surface resistance.  相似文献   
87.
土体水分潜在蒸发确定方法研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
夏琼  王旭  窦顺  付晓丹 《干旱区地理》2018,41(4):793-801
以相关领域关于土体蒸发模型研究成果为基础,结合岩土工程蒸发过程的特点,对确定土体潜在蒸发量方法的发展及现状进行介绍,并对每种理论模型的适用条件及参数的确定等进行分析。结果显示:(1)特定的地区、气候条件下,通过多种理论模型对比分析,确定相对合适的理论模型估算潜在蒸发量是必要的。(2)气象参数的区域性很明显,即使是具有相似气候特征的小区域,不同气象站提供的气象资料反演的气象参数也不相同,故根据气象资料反演得到的气象参数要进行修正。(3)现有蒸发测量技术应用于岩土工程的蒸发测量中有待进一步深入研究发展。提出该课题在岩土工程领域今后的研究方向,包括土体稳定蒸发阶段蒸发机制、蒸发的滞后效应、夜间土体水分变化对蒸发的影响、通用蒸发模型的建立及实测蒸发量的尺度效应等。  相似文献   
88.
Φ20 cm和E601型蒸发皿在新疆均有使用,但两种数据序列自观测开始至今均不完整,尤其自2003年以后数据未进行整合和校正,使得对蒸发皿蒸发量数据的使用和深入分析受到限制。本研究基于Φ20 cm (E20)和E601型蒸发皿蒸发量(E601)的共同观测期数据,选取新疆地区57个气象站,分析4~10月E20和E601的换算系数K。以数据序列较长的喀什(隶属南疆)和塔城站(北疆)为例,分析了逐日和逐月尺度下K的变化,并将各月K值用于两个典型站2003-2016年期间4月1日~9月30日E20的估算,得出1961-2016年完整的日E20序列。进一步基于复Morlet小波函数对月及年尺度E20的波谱特性和周期变化进行了分析,结果表明:(1)新疆地区E20和E601的换算系数在4~10月期间具有较大的空间差异,南疆K值较北疆大。(2)喀什和塔城站插补后完整的1961-2016年期间日E20序列具有以年为周期的典型变化,月E20在7月最大,年E20均具有明显的增加趋势;日、月及年尺度下喀什站E20均高于塔城站。(3)两站点1~12月E20的主周期和准周期具有2~16 a的波动,年E20的主周期均为7 a,喀什站准周期为3 a和6 a,塔城站准周期为2 a和4 a。本研究可为新疆地区蒸发量序列的插补及进一步应用提供参考。  相似文献   
89.
要长江流域近150a间发生的1870、1931、1935、1954与1998年特大洪水灾害损失严重;长江洪水是我国的心腹之患.1990年以来,长江大洪水高频发生,达6次.长江洪水的发生,除湖泊蓄洪功能减弱等因素外,与全球变暖有关.20世纪90年代为近千年中全球最暖的年代,水循环加快,长江中下游夏季降水量为近120a最多的十年,高出1961-1990平均值112mm;而降雨集中和大暴雨降水事件的增加是洪水增加的主要原因.区域气候模式模拟在CO2倍增时,长江流域温度升高2.2℃,夏季降水增加10%-20%,气溶胶的增加可能使此值降低一些.考虑气候变暖可能促进潜在蒸发增加9%-15%的假定情景,计算在降水增加10%,蒸发增加9%条件下,最大洪峰流量在大通站将会达到8.4×104 m3/s左右,己超过1998年洪峰流量;汉口站7.9×104 m3/s,超过有记录以来所有的洪峰流量;而在宜昌站高达6.94×104 m3/s,超过自有实测记录以来的除1896年和1981年以外所有的洪峰流量.假定情景的最高值出现在降水增加20%,蒸发增加15%时,大通站流量将达到9.45×104 m3/s,超过该站近百年最大值,1954年的9.26×104 m3/s;宜昌站将出现7.82×104 m3/s流量,超过1882年以来所有实测记录值,但比1870年据洪痕推算的10.5×104 m3/s仍有逊色.未来气候若继续变暖,降水量增加将给长江洪水防御带来巨大的压力.但上述估算是粗糙的,有一定的不确定性,需在以后的研究中进一步改进.  相似文献   
90.
内蒙古呼伦湖水量平衡计算与分析   总被引:2,自引:2,他引:0  
根据呼伦湖的实际水文过程,计算1963-1980年月水量平衡,在此基础上,分析库容与径流、径流+降雨、径流+降雨-蒸发的相关性.利用累积和分析水位、径流、降雨、蒸发年均值的突变情况,进而重点论述了2000年后水位持续降低的原因.同时,探讨各水平衡项的年内分布规律及相互关系.结果表明,2000年后水位的急剧降低是气候变化(暖干化)造成的.河川径流对水位的影响程度最大,其次为湖面降雨.每年4、5月,冰封期积累的降雪融化渗入地下补给湖泊,其他时间则由湖泊补给地下水.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号