首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2972篇
  免费   725篇
  国内免费   1238篇
测绘学   325篇
大气科学   2155篇
地球物理   790篇
地质学   861篇
海洋学   329篇
天文学   12篇
综合类   161篇
自然地理   302篇
  2024年   28篇
  2023年   50篇
  2022年   93篇
  2021年   122篇
  2020年   156篇
  2019年   185篇
  2018年   159篇
  2017年   163篇
  2016年   167篇
  2015年   156篇
  2014年   225篇
  2013年   294篇
  2012年   226篇
  2011年   203篇
  2010年   196篇
  2009年   215篇
  2008年   168篇
  2007年   282篇
  2006年   266篇
  2005年   207篇
  2004年   196篇
  2003年   190篇
  2002年   154篇
  2001年   126篇
  2000年   152篇
  1999年   118篇
  1998年   96篇
  1997年   77篇
  1996年   66篇
  1995年   47篇
  1994年   58篇
  1993年   24篇
  1992年   20篇
  1991年   18篇
  1990年   12篇
  1989年   8篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有4935条查询结果,搜索用时 15 毫秒
31.
地下开采引发地面沉陷的未确知聚类预测方法   总被引:8,自引:0,他引:8  
对未确知聚类预测法进行优化,并将其应用于开采地面沉陷的预测研究。采用开采地面沉陷的实测数据按最大沉陷量进行分类,利用各分类影响因素的均值表示各分类中心,并确定各影响因素的未确知测度函数。由待测对象指标的综合未确知测度与各分类指标的未确知测度间的距离来确定待预测对象所属等级,给出了预测值的计算公式。经计算验证,该方法的正确率为75%。但在实际应用中,为了保证地表建筑设施等更加安全,允许预测级高判,则正确率可达100%。针对某铁矿一观测点进行预测,并与实测数据比较,结果表明,未确知聚类预测的结果是令人满意的,为开采地面沉陷的预测提供了一种新思路。  相似文献   
32.
GM(1,1)动态模型在吴江市地下水水位预测中的应用   总被引:1,自引:0,他引:1  
以吴江市地下水水位预测为例,详细阐述了地下水水位时间序列的GM(1,1)动态模型的原理和建立过程,并根据模型的预测值和实测值,对模型的精度进行了检验,结果表明,模型的预测精度达到了99.27%,等级属于Ⅰ级,具有实际的应用价值,为地下水资源的科学管理提供了依据。  相似文献   
33.
笔者在追忆李四光地震科学和防震减灾指导思想的基础上,提出了以系统整体观指导防震应急的新论点,包括:运用地壳运动整体观研究地震规律;应用地震预测整体观进行地震预测;划分活动性构造体系,研究构造活动性;加强综合监测,研究各种地震前兆和相关的自然变异的发展趋势;圈定地震风险区,制定防震应急预案等.并结合中国的实际情况进行了论述.  相似文献   
34.
This paper proposes a novel history-matching method where reservoir structure is inverted from dynamic fluid flow response. The proposed workflow consists of searching for models that match production history from a large set of prior structural model realizations. This prior set represents the reservoir structural uncertainty because of interpretation uncertainty on seismic sections. To make such a search effective, we introduce a parameter space defined with a “similarity distance” for accommodating this large set of realizations. The inverse solutions are found using a stochastic search method. Realistic reservoir examples are presented to prove the applicability of the proposed method.  相似文献   
35.
An important task in modern geostatistics is the assessment and quantification of resource and reserve uncertainty. This uncertainty is valuable support information for many management decisions. Uncertainty at specific locations and uncertainty in the global resource is of interest. There are many different methods to build models of uncertainty, including Kriging, Cokriging, and Inverse Distance. Each method leads to different results. A method is proposed to combine local uncertainties predicted by different models to obtain a combined measure of uncertainty that combines good features of each alternative. The new estimator is the overlap of alternate conditional distributions.  相似文献   
36.
Seismic hazard analysis is based on data and models, which both are imprecise and uncertain. Especially the interpretation of historical information into earthquake parameters, e.g. earthquake size and location, yields ambiguous and imprecise data. Models based on probability distributions have been developed in order to quantify and represent these uncertainties. Nevertheless, the majority of the procedures applied in seismic hazard assessment do not take into account these uncertainties, nor do they show the variance of the results. Therefore, a procedure based on Bayesian statistics was developed to estimate return periods for different ground motion intensities (MSK scale).Bayesian techniques provide a mathematical model to estimate the distribution of random variables in presence of uncertainties. The developed method estimates the probability distribution of the number of occurrences in a Poisson process described by the parameter . The input data are the historical occurrences of intensities for a particular site, represented by a discrete probability distribution for each earthquake. The calculation of these historical occurrences requires a careful preparation of all input parameters, i.e. a modelling of their uncertainties. The obtained results show that the variance of the recurrence rate is smaller in regions with higher seismic activity than in less active regions. It can also be demonstrated that long return periods cannot be estimated with confidence, because the time period of observation is too short. This indicates that the long return periods obtained by seismic source methods only reflects the delineated seismic sources and the chosen earthquake size distribution law.  相似文献   
37.
从地(市)级气象台的业务工作出发,试图建立通过微机实现的对上接收信息、对外预报服务、对下预报指导的三位一体的天气预报服务业务化系统,以发挥地(市)级气象台在经济建设和防灾减灾中的作用,推动天气预报和服务的现代化建设,把基层气象工作推向一个新的台阶。  相似文献   
38.
A sequence of computer experiments is used to study questions concerning the tsunami problem as a quantitative estimate of tsunami danger, detailed geographical tsunami classification, determination of the parameters of critical tsunami waves, and the conditions of their development. We call a wave critical, if its impact on the coast is most hazardous.Using the Middle Kuril Island as an example, we present the results of a computer experiment which includes determining the wavefields on the shelf and estimating the effects connected with the deep-water Bussol and Diana Straits.Numerical simulation of tsunami waves of different sources permits the assessment of the extent of tsunami danger in different areas of the coastal zone of Simushir Island, depending on the location of the focus zone and their geometry.The major singularities of the wavefield arise in the zones of the deep-water straits. The distribution of the amplification factors is determined by both the global parameters of the wavefields and the local properties of individual harbours. The results obtained for a particular harbour in the northern part of Simushir Island, formed the basis for the quantitative estimate of tsunami danger for this area.  相似文献   
39.
The determination of the optimal type and placement of a nonconventional well in a heterogeneous reservoir represents a challenging optimization problem. This determination is significantly more complicated if uncertainty in the reservoir geology is included in the optimization. In this study, a genetic algorithm is applied to optimize the deployment of nonconventional wells. Geological uncertainty is accounted for by optimizing over multiple reservoir models (realizations) subject to a prescribed risk attitude. To reduce the excessive computational requirements of the base method, a new statistical proxy (which provides fast estimates of the objective function) based on cluster analysis is introduced into the optimization process. This proxy provides an estimate of the cumulative distribution function (CDF) of the scenario performance, which enables the quantification of proxy uncertainty. Knowledge of the proxy-based performance estimate in conjunction with the proxy CDF enables the systematic selection of the most appropriate scenarios for full simulation. Application of the overall method for the optimization of monobore and dual-lateral well placement demonstrates the performance of the hybrid optimization procedure. Specifically, it is shown that by simulating only 10% or 20% of the scenarios (as determined by application of the proxy), optimization results very close to those achieved by simulating all cases are obtained.  相似文献   
40.
All geochemical measurements require the taking of field samples, but the uncertainty that this process causes is often ignored when assessing the reliability of the interpretation, of the geochemistry or the health implications. Recently devised methods for the estimation, optimisation and reduction of this uncertainty have been evaluated by their application to the investigation of contaminated land. Uncertainty of measurement caused by primary sampling has been estimated for a range of six different contaminated land site investigations, using an increasingly recognized procedure. These site investigations were selected to reflect a wide range of different sizes, contaminants (organic and metals), previous land uses (e.g. tin mining, railway sidings and gas works), intended future use (housing to nature reserves) and routinely applied sampling methods. The results showed that the uncertainty on measurements was substantial, ranging from 25% to 186% of the concentration values at the different sites. Sampling was identified as the dominant source of the uncertainty (〉70% of measurement uncertainty) in most cases. The fitness-for-purpose of the measurements was judged using the optimized contaminated land investigation (OCLI) method. This identifies the optimal level of uncertainty that reduces to overall financial loss caused by the measurement procedures and the misclassification of the contamination, caused by the uncertainty. Generally the uncertainty of the actual measurements made in these different site investigations was found to be sub-optimal, and too large by a factor of approximately two. The uncertainty is usually limited by the sampling, but this can be reduced by increasing the sample mass by a factor of 4 (predicted by sampling theory). It is concluded that knowing the value of the uncertainty enables the interpretation to be made more reliable, and that sampling is the main factor limiting most investigations. This new approach quantifies this problem for the first time, and allows sampling procedures to be critically evaluated, and modified, to improve the reliability of the geochemical assessment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号