首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   29篇
  国内免费   102篇
地球物理   17篇
地质学   311篇
综合类   5篇
  2024年   2篇
  2022年   3篇
  2021年   1篇
  2020年   7篇
  2019年   7篇
  2018年   9篇
  2017年   7篇
  2016年   7篇
  2015年   14篇
  2014年   11篇
  2013年   18篇
  2012年   25篇
  2011年   17篇
  2010年   6篇
  2009年   12篇
  2008年   7篇
  2007年   14篇
  2006年   15篇
  2005年   10篇
  2004年   10篇
  2003年   16篇
  2002年   12篇
  2001年   6篇
  2000年   7篇
  1999年   10篇
  1998年   9篇
  1997年   10篇
  1996年   7篇
  1995年   9篇
  1994年   6篇
  1993年   7篇
  1992年   3篇
  1991年   6篇
  1990年   8篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1984年   1篇
  1983年   1篇
排序方式: 共有333条查询结果,搜索用时 31 毫秒
91.
稀土元素地球化学对太古宙花岗岩类成因的判别   总被引:1,自引:0,他引:1  
太古宙花岗岩类的成因是地学界争论颇久的问题。本文以稀土元素地球化学理论论证了北京、辽吉地区某些花岗岩为岩浆成因而非混合岩构成的“地层”。文章论述了主元素特征为钾质花岗岩的岩体实是钾化的TTG岩体 ,论述了主元素成分相同的TTG岩石具不同的稀土图谱 ;被长英质细脉注入的TTG岩石受混染作用改造稀土图谱也发生了变化 ;各种各样非TTG成分的岩石由于硅质的渗透被改造为TTG质岩石。这些实例说明 ,必须进行岩石学、矿物学和地球化学的综合研究才能判定太古宙形形色色的花岗质岩石。  相似文献   
92.
南岭中生代成锡花岗岩系花岗质岩浆多期或多阶段侵位和结晶的产物。空间上往往集中成群成带分布,构成多个复式岩基,明显受华夏和扬子两大地块接合部NE向深大断裂及NW向隐伏深大断裂的控制;中生代成锡花岗岩主要侵位于燕山期,成矿作用主要有两期,一是早期矽卡岩化导致锡的初步富集,二是晚期岩浆热液叠加形成了工业锡矿床。锡成矿作用与燕山期伸展背景下的大规模花岗岩浆活动密切相关。  相似文献   
93.
The timing and thermal effects of granitoid intrusions into accreted sedimentary rocks are important for understanding the growth process of continental crust. In this study, the petrology and geochronology of pelitic gneisses in the Tseel area of the Tseel terrane, SW Mongolia, are examined to understand the relationship between igneous activity and metamorphism during crustal evolution in the Central Asian Orogenic Belt (CAOB). Four mineral zones are recognized on the basis of progressive changes in the mineral assemblages in the pelitic gneisses, namely: the garnet, staurolite, sillimanite and cordierite zones. The gneisses with high metamorphic grades (i.e. sillimanite and cordierite zones) occur in the central part of the Tseel area, where granitoids are abundant. To the north and south of these granitoids, the metamorphic grade shows a gradual decrease. The composition of garnet in the pelitic gneisses varies systematically across the mineral zones, from grossular‐rich garnet in the garnet zone to zoned garnet with grossular‐rich cores and pyrope‐rich rims in the staurolite zone, and pyrope‐rich garnet in the sillimanite and cordierite zones. Thermobarometric analyses of individual garnet crystals reveal two main stages of metamorphism: (i) a high‐P and low‐T stage (as recorded by garnet in the garnet zone and garnet cores in the staurolite zone) at 520–580 °C and 4.5–7 kbar in the kyanite stability field and (ii) a low‐P and high‐T stage (garnet rims in the staurolite zone and garnet in the sillimanite and cordierite zones) at 570–680 °C and 3.0–6.0 kbar in the sillimanite stability field. The earlier high‐P metamorphism resulted in the growth of kyanite in quartz veins within the staurolite and sillimanite zones. The U–Pb zircon ages of pelitic gneisses and granitoids reveal that (i) the protolith (igneous) age of the pelitic gneisses is c. 510 Ma; (ii) the low‐P and high‐T metamorphism occurred at 377 ± 30 Ma; and (iii) this metamorphic stage was coeval with granitoid intrusion at 385 ± 7 Ma. The age of the earlier low‐T and high‐P metamorphism is not clearly recorded in the zircon, but probably corresponds to small age peaks at 450–400 Ma. The low‐P and high‐T metamorphism continued for c. 100 Ma, which is longer than the active period of a single granitoid body. These findings indicate that an elevation of geotherm and a transition from high‐P and low‐T to low‐P and high‐T metamorphism occurred, associated with continuous emplacement of several granitoids, during the crustal evolution in the Devonian CAOB.  相似文献   
94.
新疆阿尔泰造山带西南缘分布有多拉纳萨依、赛都、哲兰德等大中型金矿床,近年又发现沃多克等小型金矿.这些金矿主要赋存于糜棱岩化石英闪长岩中,岩石地球化学特征表明沃多克和多拉纳萨依金矿含矿石英闪长岩特征基本一致,属同一期岩浆活动的产物,而明显不同于两矿床之间的萨热乌增英云闪长岩.沃多克金矿含矿石英闪长岩和萨热乌增英云闪长岩LA-ICP-MS锆石U-Pb年龄分别为(299.4±4.1) Ma和(317.7±1.5) Ma.二者分别属于后造山和后碰撞花岗岩.沃多克含金石英闪长岩年龄限定了多拉纳萨依一带金矿形成时代不早于300 Ma,结合前人的研究成果分析,表明其主要成矿时期为290 Ma左右.萨热乌增等岩体的形成早于金矿形成时代,金的成矿作用与该期大规模花岗岩体的侵位无关.  相似文献   
95.
Granite-hosted,Nb-,Ta-,Sn-,U-,Th-,and Zr(Hf)-bearing mineralization from the Abu Rusheid shear zones occurs about 97 km southwest of the town of Marsa Alam,South Eastern Desert,Egypt.The SSE-trending brittle-ductile Abu Rusheid shear zones crosscut the peralkalic granitic gneisses and cataclastic to mylonitic rocks(mylonite,protomlyonite,and ultramylonite).The northern shear zone varies in width from 1 to 3 m with a strike length of >500 m,and the southern shear zone is 0.5 to 8 m wide and >1 km long.These shear zones locally host less altered lamprophyre and locally sheared granitic aplite-pegmatite dykes.The rare-metal minerals,identified from the peralkalic granitic gneisses and cataclastic to mylonitic rocks are associated with muscovite,chlorite,quartz,fluorite,pyrite,magnetite,and rare biotite that are restricted to the Abu Rusheid shear zones;these are columbite-tantalite and pyrochlore(var.betafite) in the northern shear zone and ferrocolumbite in the southern shear zone.Cassiterite occurs as inclusions in the columbite-tantalite minerals.U-and Th-minerals(uraninite,thorite,uranothorite,ishikawaite,and cheralite) and Hf-rich zircon coexist.Magmatic(?) zircon contains numerous inclusions of rutile,fluorite,U-Th and REE minerals,such as uranothorite,cheralite,monazite,and xenotime.Compositional variations in Ta/(Ta+Nb) and Mn/(Mn+Fe) in columbite range from 0.07-0.42 and 0.04-0.33,respectively,and Hf contents in zircon from 1.92-6.46 of the two mineralized shear zones reflect the extreme degree of magmatic fractionation.Four samples of peralkalic granitic gneisses and cataclastic to mylonitic rocks from the southern shear zone have very low TiO2(0.02 wt%-0.04 wt%),Sr [(15-20)×10-6],and Ba [(47-78)×10-6],with high Fe2O3T(0.94 wt%-1.99 wt%),CaO(0.14 wt%-1.16 wt%),alkalis(9.2 wt%-10.1 wt%),Rb [(369-805)×10-6],Zr [(1033-2261)×10-6],Nb [(371-913)×10-6],U [(51-108)×10-6],Th [(36-110)×10-6],Ta [(38-108)×10-6],Pb [(39-364)×10-6],Zn [(21-424)×10-6],Y [(8-304)×10-6],Hf [(29-157)×10-6],and ∑REE [(64-304)×10-6],especially HREE [(46-167)×10-6].Three samples from the northern shear zone also have very low TiO2(0.03 wt%),Sr [(11-16)×10-6],and Ba [(38-47)×10-6],with high Fe2O3T(1.97 wt%-2.91 wt%),CaO(0.49 wt%-1.01 wt%),alkalis(7.2 wt%-8.3 wt%),Rb [(932-978)×10-6],Zr [(1707-1953)×10-6],Nb [(853-981)×10-6],Ta [(100-112)×10-6],U [(120-752)×10-6],Th [(121-164)×10-6],Pb [(260-2198)×10-6],Zn [(483-1140)×10-6],Y [(8-304)×10-6],Hf [(67-106)×10-6],and ∑REE [(110-231)×10-6],especially HREE [(91-177)×10-6].The very high Rb/Sr(57.5-88.9),and low Zr/Hf(16.9-25.6),Nb/Ta(7.7-9.8),and Th/U(0.21-1.01) are consistent with very frac-tionated fluorine-bearing granitic rocks that were altered and sheared.The field evidence,textural relations,and compositions of the ore minerals suggest that the main mineralizing event was magmatic(629+/-5 Ma,CHIME monazite),with later hydrothermal alteration and local remobilization of the high-field-strength elements.  相似文献   
96.
Garnet-biotite gneisses, some of which contain sillimanite or hornblende, are widespread within the Otter Lake terrain, a portion of the Grenville Province of the Canadian Shield. The metamorphic grade is upper amphibolite to, locally, lower granulite facies. The atomic ratio Fe2+/(Fe2++ Fe3+) in biotite ranges from 0.79 to 0.89 (ferrous iron determinations in 10 highly pure separates), with a mean of 0.86. Mg and Fe2+ atoms occupy 67–78% of the octahedral sites, the remainder are occupied by Fe3+, Ti, and Al, and some are vacant. Mg/(Mg + Fe2+), denoted X, in the analysed samples ranges from 0.32 to 0.65. Garnet contains 1–24% grossular, 1–12% spessartine and X ranges from 0.07 to 0.34. Compositional variation in biotite and garnet is examined in relation to three mineral equilibria: (I) biotite + sillimanite + quartz = garnet + K-feldspar + H2O; (II) pyrope + annite = almandine + phlogopite; (III) anorthite = grossular + sillimanite + quartz. Measurements of X (biotite) and X (garnet) are used to construct an illustrative model for equilibrium (I) which relates the observed variation in X to a temperature range of 70°C or a range in H2O activity of 0.6; the latter interpretation is preferred. In sillimanite-free gneisses, the distribution of Mg and Fe2+ between garnet (low in Ca and Mn) and biotite is adequately described by a distribution coefficient (KD) of 4.1 (equilibrium II). The observed increase in the distribution coefficient with increasing Ca in garnet is ln KD= 1.3 + 2.5 × 10?2 [Ca] where [Ca] = 100 Ca/(Mg + Fe2++ Mn + Ca). The distribution coefficient is apparently unaffected by the presence of up to 12% spessartine in garnet. In several specimens of garnet-sillimanite-plagioclase gneiss, the Ca contents of garnet and of plagioclase increase in unison, as required by equilibrium (III). The mean pressure calculated from these data (n= 17) is 5.9 kbar, and the 95% confidence limits are ±0.5 kbar.  相似文献   
97.
In the Boi Massif of Western Timor the Mutis Complex, which is equivalent to the Lolotoi Complex of East Timor, is composed of two lithostratigraphical components: various basement schists and gneisses; and the dismembered remnants of an ophiolite. Cordierite-bearing pelitic schists and gneisses carry an early mineral assemblage of biotite + garnet + plagioclase + Al-silicate, but contain no prograde muscovite; sillimanite occurs in a textural mode which suggests that it replaced and pseudomorphed kyanite at an early stage and some specimens of pelitic schist contain tiny kyanite relics in plagioclase. Textural relations between, and mineral chemistries of, ferro-magnesian phases in these pelitic chists and gneisses suggest that two discontinuous reactions and additional continuous compositional changes have been overstepped, possibly with concomitant anatexis, as a result of decrease in Pload during high temperature metamorphism. The simplified reactions are: garnet and/or biotite + sillimanite + quartz + cordierite + hercynite + ilmenite + excess components. P-T conditions during the development of the early mineral assemblage in the pelitic gneisses are estimated to have been P + 10 kbar and T > 750°C, based upon the plagioclase-garnet-Al-silicate-quartz geobarometer and the garnet-biotite geothermometer. P-T conditions during the subsequent development of cordierite-bearing mineral assemblages in the pelitic gneisses are estimated to have been P + 5 kbar and T + 700°C with XH2O < 0.5, based upon the Fe content of cordierite occurring in the assemblage quartz + plagioclase + sillimanite + biotite + garnet + cordierite coexisting with melt. Final equilibration between some of the phases suggests that conditions dropped to P > 2.3 kbar and T > 600°C. A similar exhumation P-T path is suggested for the pelitic schists with early metamorphic conditions of P > 6.2 kbar and T > 745°C and subsequent development of cordierite under conditions in the range P = 3-4 kbar and T = 600-700°C. The tectonic implications of these P-T estimates are discussed and it is concluded that the P-T path followed by these rocks was caused by decompression during rifting and synmetamorphic ophiolite emplacement resulting from processes during the initiation and development of a convergent plate junction located in Southeast Asia during late Jurassic to Cretaceous time.  相似文献   
98.
锦州-迁安太古宙赞岐岩类片麻岩成因及其动力学意义   总被引:2,自引:2,他引:0  
详细的野外地质调查和综合研究表明冀东-辽西南部地区太古宙变质基底主要由富钾花岗质岩石组成,由锦州至迁安构成一条NEE向延伸200余千米的富钾花岗质岩石带。这些富钾花岗质岩石主要由似斑状/中粒石英二长闪长质-花岗闪长质-二长花岗质片麻岩和中粒二长花岗岩-正长花岗岩构成。全岩地球化学分析表明这些石英二长闪长质-花岗闪长质-二长花岗质片麻岩具有高FeO~T、MgO、K_2O和Mg~#值的地球化学特征,与全球范围内中-新太古宙赞歧岩类相似。LA-ICP-MS锆石U-Pb同位素定年结果表明这些岩石形成于2546~2543Ma。岩石成因研究表明这些赞歧岩类片麻岩形成于俯冲板片及其拖曳的洋壳沉积物、增生楔物质的熔体和受俯冲流体、熔体交代的地幔楔之间相互作用引发的一系列的岩浆作用。这一多样化的赞岐岩类岩浆作用形成了一条新太古代赞岐岩类带,该赞岐岩类带反映了冀东-辽西南部地区新太古代从NNW向SSE向板片热俯冲的动力学体制。  相似文献   
99.
100.
As part of Central Asian Orogenic Belt (CAOB), the Central Tianshan zone plays a crucial role in the reconstruction of the tectonic evolution of the CAOB. Furthermore, it is bordered by the Tarim Craton to the south, and the comparable evolutionary history between them enables the Central Tianshan zone to provide essential information on the crustal evolution of the Tarim Craton. The eastern segment of the Central Tianshan tectonic zone is characterized by the presence of numerous Precambrian metamorphic rocks, among which the Xingxingxia Group is the most representative one. The granitoids gneisses, intruded into the Xingxingxia Group, consist of two major lithological assemblages: (1) biotite-monzonitic gneisses and (2) biotite-plagioclase gneisses. These metamorphosed granitoid rocks are characterized by enrichment in SiO2, Al2O3 and K2O and depletion in MgO and FeOT. The Rittmann index (σ) spreads between 1.44 and 2.21 and ACNK (Al2O3/(CaO + Na2O + K2O)) ranges from 1.03 to 1.08, indicating that these granitoid gneisses are high-K calc-alkaline and peraluminous. Trace element data indicate that the studied samples are enriched in LREE with moderate REE fractionated patterns ((La/Yb)N = 10.5–75.3). The concentrations of HREE of the garnet-bearing gneisses are significantly higher than those of garnet-free gneisses. The former show pronounced negative Eu anomalies (Eu/Eu* = 0.32–0.57), while the latter are characterized by negligible negative Eu anomalies to moderate positive Eu anomalies (Eu/Eu* = 0.80–1.35). In addition, the enrichment of LILE (Rb, Th, K, Pb) and depletion of HFSE (Ta, Nb, P, Ti) of the examined granitoid gneisses are similar to typical volcanic-arc granites. Zircons U–Pb dating on the biotite monzonitic gneiss yields a weighted mean 206Pb/238U age of 942.4 ± 5.1 Ma, suggesting their protoliths were formed in the early Neoproterozoic, which is compatible with the time of the assembly of supercontinent Rodinia. The zircons have a large εHf(t) variation from −5.6 to +3.2, suggesting that both old crust-derived magmas and mantle-derived juvenile materials contributed to the formation of their protoliths. Based on field observation, and petrological, geochemical and geochronological investigations, we infer that the granitoid gneisses from Xingxingxia were probably formed on a continental arc that resulted from the interaction of Australia and the Tarim Craton during the assembly of the Rodinia supercontinent, and that the Central Tianshan zone was a part of the Tarim Craton during that time. Besides, the Grenvillian orogenic events may have developed better in the Tarim Craton than previously expected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号