首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2709篇
  免费   543篇
  国内免费   330篇
测绘学   118篇
大气科学   245篇
地球物理   1079篇
地质学   959篇
海洋学   286篇
天文学   22篇
综合类   154篇
自然地理   719篇
  2024年   9篇
  2023年   19篇
  2022年   65篇
  2021年   117篇
  2020年   159篇
  2019年   111篇
  2018年   130篇
  2017年   130篇
  2016年   140篇
  2015年   176篇
  2014年   176篇
  2013年   340篇
  2012年   152篇
  2011年   155篇
  2010年   143篇
  2009年   131篇
  2008年   146篇
  2007年   151篇
  2006年   141篇
  2005年   112篇
  2004年   134篇
  2003年   110篇
  2002年   88篇
  2001年   87篇
  2000年   55篇
  1999年   73篇
  1998年   56篇
  1997年   63篇
  1996年   42篇
  1995年   26篇
  1994年   27篇
  1993年   29篇
  1992年   17篇
  1991年   14篇
  1990年   12篇
  1989年   10篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   4篇
  1984年   5篇
  1982年   3篇
  1980年   4篇
  1978年   3篇
排序方式: 共有3582条查询结果,搜索用时 218 毫秒
101.
Spatial information on soil properties is an important input to hydrological models. In current hydrological modelling practices, soil property information is often derived from soil category maps by the linking method in which a representative soil property value is linked to each soil polygon. Limited by the area‐class nature of soil category maps, the derived soil property variation is discontinuous and less detailed than high resolution digital terrain or remote sensing data. This research proposed dmSoil, a data‐mining‐based approach to derive continuous and spatially detailed soil property information from soil category maps. First, the soil–environment relationships are extracted through data mining of a soil map. The similarity of the soil at each location to different soil types in the soil map is then estimated using the mined relationships. Prediction of soil property values at each location is made by combining the similarities of the soil at that location to different soil types and the representative soil property values of these soil types. The new approach was applied in the Raffelson Watershed and Pleasant Valley in the Driftless Area of Wisconsin, United States to map soil A horizon texture (in both areas) and depth to soil C horizon (in Pleasant Valley). The property maps from the dmSoil approach capture the spatial gradation and details of soil properties better than those from the linking method. The new approach also shows consistent accuracy improvement at validation points. In addition to the improved performances, the inputs for the dmSoil approach are easy to prepare, and the approach itself is simple to deploy. It provides an effective way to derive better soil property information from soil category maps for hydrological modelling. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
102.
The effects of land use changes on the ecology and hydrology of natural watersheds have long been debated. However, less attention has been given to the hydrological effects of forest roads. Although less studied, several researchers have claimed that streamflow changes related to forest roads can cause a persistent and pervasive effect on hillslope hydrology and the functioning of the channel system. The main potential direct effects of forest roads on natural watersheds hydrologic response are runoff production on roads surfaces due to reduced infiltration rates, interruption of subsurface flow by road cutslopes and rapid transfer of the produced runoff to the stream network through roadside ditches. The aforementioned effects may significantly modify the total volume and timing of the hillslope flow to the stream network. This study uses detailed field data, spatial data, hydro‐meteorological records, as well as numerical simulation to investigate the effects of forest roads on the hydrological response of a small‐scale mountain experimental watershed, which is situated in the east side of Penteli Mountain, Attica, Greece. The results of this study highlight the possible effects of forest roads on the watersheds hydrological response that may significantly influence direct runoff depths and peak flow rates. It is demonstrated that these effects can be very important in permeable watersheds and that more emphasis should be given on the impact of roads on the watersheds hydrological response. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
103.
青藏高原脆弱的高寒植被对外界干扰十分敏感,使其成为研究植被对气候变化响应的理想区域之一。青藏高原气候变化剧烈,在较短的合成时间研究气候变化对植被的影响十分必要。因此,本文利用GIMMS NDVI时间序列数据集,研究了1982-2012年青藏高原生长季月尺度植被生长的时空动态变化,探讨了其与气温、降水量和日照时数等气候因子的响应关系。结果表明:在区域尺度上,除8月外,其他各月份植被均呈增加趋势,显著增加多发生在4-7月和9月;大部分月份的NDVI增加速率随着时段的延长显著减小,表明NDVI增加趋势放缓;在像元尺度上,月NDVI显著变化的区域多呈增加趋势,但显著减少范围的扩张多快于显著增加。4月和7月植被生长主要是受气温和日照时数共同作用,6月和9月受气温的控制,而8月则主要受降水量的影响。长时间序列NDVI数据集的出现为采用嵌套时段研究植被生长变化趋势奠定了前提,而植被活动变化趋势的持续性则有助于形象表征植被活动变化过程、深入理解植被对气候变化的响应和预测植被未来生长变化趋势。由此推测,青藏高原月NDVI未来增加趋势总体上趋于缓和,但在像元尺度显著变化的区域趋于增加。  相似文献   
104.
Quantifying the proportion of the river hydrograph derived from the different hydrological pathways is essential for understanding the behaviour of a catchment. This paper describes a new approach using the output from master recession curve analysis to inform a new algorithm based on the Lyne and Hollick ‘one‐parameter’ signal analysis filtering algorithm. This approach was applied to six catchments (including two subcatchments of these) in Ireland. The conceptual model for each catchment consists of four main flow pathways: overland flow, interflow, shallow groundwater and deep groundwater. The results were compared with those of the master recession curve analysis, a recharge coefficient approach developed in Ireland and the semi‐distributed, lumped and deterministic hydrological model Nedbør‐Afstrømings‐Model. The new algorithm removes the ‘free variable’ aspect that is typically associated with filtering algorithms and provides a means of estimating the contribution of each pathway that is consistent with the results of hydrograph separation in catchments that are dominated by quick response pathways. These types of catchments are underlain by poorly productive aquifers that are not capable of providing large baseflows in the river. Such aquifers underlie over 73% of Ireland, ensuring that this new algorithm is applicable in the majority of catchments in Ireland and potentially in those catchments internationally that are strongly influenced by the quick‐responding hydrological pathways. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
105.
Quantifying the impact of landscape on hydrological variables is essential for the sustainable development of water resources. Understanding how landscape changes influence hydrological variables will greatly enhance the understanding of hydrological processes. Important vegetation parameters are considered in this study by using remote sensing data and VIC-CAS model to analyse the impact of landscape changes on hydrology in upper reaches of the Shule River Basin (URSLB). The results show there are differences in the runoff generation of landscape both in space and time. With increasing altitude, the runoff yields increased, with approximately 79.9% of the total runoff generated in the high mountains (4200–5900 m), and mainly consumed in the mid-low mountain region. Glacier landscape produced the largest runoff yields (24.9% of the total runoff), followed by low-coverage grassland (LG; 22.5%), alpine cold desert (AL; 19.6%), mid-coverage grassland (MG; 15.6%), bare land (12.5%), high-coverage grassland (HG; 4.5%) and shrubbery (0.4%). The relative capacity of runoff generation by landscapes, from high to low, was the glaciers, AL, LG, HG, MG, shrubbery and bare land. Furthermore, changes in landscapes cause hydrological variables changes, including evapotranspiration, runoff and baseflow. The study revealed that HG, MG, and bare land have a positive impact on evapotranspiration and a negative impact on runoff and baseflow, whereas AL and LG have a positive impact on runoff and baseflow and a negative impact on evapotranspiration. In contrast, glaciers have a positive impact on runoff. After the simulation in four vegetation scenarios, we concluded that the runoff regulation ability of grassland is greater than that of bare land. The grassland landscape is essential since it reduced the flood peak and conserved the soil and water.  相似文献   
106.
本文以3S技术为支撑,在修正水土流失方程(RUSLE)的基础上,针对徐州黄泛平原-丘陵地带的特殊地形地貌、对2000年以来徐州市水土流失时空变化特征进行了分析。结果表明:2000-2014年徐州市土壤侵蚀等级以微度为主,微度侵蚀面积占总侵蚀面积多年平均达到76.34%;中度侵蚀次之,所占比例在10%~17%间;剧烈侵蚀所占比例最少。轻度及以上土壤侵蚀等级主要发生在中部微山湖下游、京杭大运河一带的丘陵岗地地区、主城区与故黄河北岸的黄泛平原地区,以及丰县、新沂、邳州的局部区域;土壤侵蚀存在一定程度年际变化特征,睢宁、丰县、邳州的部分地区侵蚀面积年际变化较为明显,土壤侵蚀总面积整体上呈现下降趋势。  相似文献   
107.
基于一维地下水渗透方程详细推导其有限差分解算过程,引入不同于显式差分的隐式差分和中心差分格式,对比分析不同差分格式对地下水模拟结果及其相应地下水重力效应的影响,并对其中的层间参数取值和非线性方程的线性化问题进行探讨。结果表明,在日本Isawa扇形地区超导台站,不同层间参数加权公式能够引起最大约0.15 μGal的重力效应差异,影响在1.9%以内;不同差分格式和线性化方法组合形式能够引起最大约0.12 μGal的重力效应差异,影响在1.5%以内。  相似文献   
108.
In cockpit karst landscapes, fluxes from upland areas contribute large volumes of water to low-lying depressions and stream flow. Hydrograph hysteresis and similarity between monitoring sites is important for understanding the space–time variability of hydrologic responses across the “hillslope–depression–stream” continuum. In this study, the hysteretic feature of hydrographs was assessed by characterizing the loop-like relationships between responses at upstream sites relative to subsurface discharge at the outlet of a small karst catchment. A classification of hydrograph responses based on the multi-scale smoothing Kernel -derived distance classifies the hydrograph responses on the basis of similarities between hillslope and depression sites, and those at the catchment outlet. Results demonstrate that the temporal and spatial variability of hydrograph hysteresis and similarity between hillslope flow and outlet stream flow can be explained by the local heterogeneity of depression aquifer. Large depression storage deficits emerging in the highly heterogeneous aquifer produce strong hysteresis and multiple relationships of upstream hydrographs relative to the outlet subsurface discharge. In contrast, when depression storage deficits are filled during consecutive rainfall events, depression hydrographs at the high permeability sites are almost synchronous or exhibit a monotonous function with the hydrographs at the outlet. This reduced hydrograph hysteresis enhances preferential flow paths in fractured rocks and conduits that can accelerate the hillslope flow to the outlet. Therefore, classification of hydrograph similarities between any upstream sites and the catchment outlet can help to identify the dominant hydrological functions in the heterogeneous karst catchment.  相似文献   
109.
110.
River water temperature is a key physical variable controlling several chemical, biological and ecological processes. Its reliable prediction is a main issue in many environmental applications, which however is hampered by data scarcity, when using data‐demanding deterministic models, and modelling limitations, when using simpler statistical models. In this work we test a suite of models belonging to air2stream family, which are characterized by a hybrid formulation that combines a physical derivation of the key equation with a stochastic calibration of parameters. The air2stream models rely solely on air temperature and streamflow, and are of similar complexity as standard statistical models. The performances of the different versions of air2stream in predicting river water temperature are compared with those of the most common statistical models typically used in the literature. To this aim, a dataset of 38 Swiss rivers is used, which includes rivers classified into four different categories according to their hydrological characteristics: low‐land natural rivers, lake outlets, snow‐fed rivers and regulated rivers. The results of the analysis provide practical indications regarding the type of model that is most suitable to simulate river water temperature across different time scales (from daily to seasonal) and for different hydrological regimes. A model intercomparison exercise suggests that the family of air2stream hybrid models generally outperforms statistical models, while cross‐validation conducted over a 30‐year period indicates that they can be suitably adopted for long‐term analyses. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号