首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4099篇
  免费   698篇
  国内免费   1033篇
测绘学   94篇
大气科学   445篇
地球物理   1126篇
地质学   2272篇
海洋学   855篇
天文学   78篇
综合类   179篇
自然地理   781篇
  2024年   17篇
  2023年   66篇
  2022年   139篇
  2021年   150篇
  2020年   170篇
  2019年   261篇
  2018年   195篇
  2017年   176篇
  2016年   188篇
  2015年   192篇
  2014年   317篇
  2013年   336篇
  2012年   271篇
  2011年   288篇
  2010年   230篇
  2009年   291篇
  2008年   279篇
  2007年   283篇
  2006年   278篇
  2005年   217篇
  2004年   232篇
  2003年   165篇
  2002年   144篇
  2001年   131篇
  2000年   125篇
  1999年   107篇
  1998年   109篇
  1997年   83篇
  1996年   84篇
  1995年   59篇
  1994年   59篇
  1993年   33篇
  1992年   29篇
  1991年   24篇
  1990年   21篇
  1989年   10篇
  1988年   8篇
  1987年   15篇
  1986年   10篇
  1985年   8篇
  1984年   8篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1954年   3篇
排序方式: 共有5830条查询结果,搜索用时 15 毫秒
181.
In this study, the impact of geothermal water on ground and surface waters has been investigated in Akarcay Basin, Turkey. The release of thermal return water from district heating in the city of Afyon and from thermal baths has a considerable environmental impact on the main stream. Historical analyses of stream water quality data show that the present pollution is associated primarily with thermal return water of district heating system. Currently, about 6% of stream water comprises of thermal water. The pollution seems to degrade the water quality in Lake Eber. Streambed sediments were found to be in equilibrium with polluted water and may lead to additional pollution in lake water. Thermal groundwater intrusion to fresh water production wells was detected mainly at sites close to geothermal fields. Solutions to remove thermal water from surface environment are suggested.  相似文献   
182.
地统计学方法在土壤学中的应用   总被引:24,自引:1,他引:24  
地统计学目前在土壤科学中得到广泛的应用和发展,成为认识土壤特征的一个重要工具.地统计学的空间变异函数和克里格插值等方法是土壤性状分析的主要手段,空间变异函数主要用于描述土壤理化性状空间变异特性,不同的插值方法可优化田间试验设计和田间采样方案,克里格插值方法则特别适用于未测量点土壤属性值的估测等.近年插值方法又被广泛应用于确定区域土壤环境容量和土壤质量标准,随机模拟则用于对土壤特性进行不确定性估计等.因而,地统计学方法对我国大量土壤学资料的整合与分析具有极大的应用前景.  相似文献   
183.
随着西部大开发战略的深入实施,如何全面认识旅游业对西部经济落后地区经济的影响,成为旅游学界关注的热点问题之一。通过对石林县社会经济统计数据的综合分析以及实地调研,证实了旅游业对促进石林县国民经济总量扩大、推动产业结构高级化和带动相关产业发展等方面具有积极作用。同时,针对当前石林旅游内部结构和发展质量中存在的旅游产品单一、景区发展失衡和社区受益不足等主要问题,提出了以推动区域经济总体发展和带动农村居民脱贫作为旅游发展的两大基本任务和实现旅游产业增长模式从数量型向内涵型增长转变的基本思路,以及相应的对策。  相似文献   
184.
The hydrologic response of engineered media plays an important role in determining a stormwater control measure's ability to reduce runoff volume, flow rate, timing, and pollutant loads. Five engineered media, typical of living roof and bioretention stormwater control measures, were investigated in laboratory column experiments for their hydrologic responses to steady, large inflow rates. The inflow, medium water content response, and outflow were all measured. The water flow mechanism (uniform flow vs. preferential flow) was investigated by analyzing medium water content response in terms of timing, magnitude, and sequence with depth. Modeling the hydrologic process was conducted in the HYDRUS‐1D software, applying the Richards equation for uniform flow modeling, and a mobile–immobile model for preferential flow modeling. Uniform flow existed in most cases, including all initially dry living roof media with bimodal pore size distributions and one bioretention medium with unimodal pore size distribution. The Richards equation can predict the outflow hydrograph reasonably well for uniform flow conditions when medium hydraulic properties are adequately represented by appropriate functions. Preferential flow was found in two media with bimodal pore size distributions. The occurrence of preferential flow is more likely due to the interaction between the bimodal pore structure and the initial water content rather than the large inflow rate.  相似文献   
185.
Run‐off from impervious surfaces has pervasive and serious consequences for urban streams, but the detrimental effects of urban stormwater can be lessened by disconnecting impervious surfaces and redirecting run‐off to decentralized green infrastructure. This study used a before–after‐control‐impact design, in which streets served as subcatchments, to quantify hydrologic effectiveness of street‐scale investments in green infrastructure, such as street‐connected bioretention cells, rain gardens and rain barrels. On the two residential treatment streets, voluntary participation resulted in 32.2% and 13.5% of parcels having green infrastructure installed over a 2‐year period. Storm sewer discharge was measured before and after green infrastructure implementation, and peak discharge, total run‐off volume and hydrograph lags were analysed. On the street with smaller lots and lower participation, green infrastructure installation succeeded in reducing peak discharge by up to 33% and total storm run‐off by up to 40%. On the street with larger lots and higher participation, there was no significant reduction in peak or total stormflows, but on this street, contemporaneous street repairs may have offset improvements. On the street with smaller lots, lag times increased following the first phase of green infrastructure construction, in which streetside bioretention cells were built with underdrains. In the second phase, lag times did not change further, because bioretention cells were built without underdrains and water was removed from the system, rather than just delayed. We conclude that voluntary green infrastructure retrofits that include treatment of street run‐off can be effective for substantially reducing stormwater but that small differences in design and construction can be important for determining the level of the benefit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
186.
187.
Significant changes have been observed in the hydrology of Central Rift Valley (CRV) lakes in Ethiopia, East Africa as a result of both natural processes and human activities during the past three decades. This study applied an integrated approach (remote sensing, hydrologic modelling, and statistical analysis) to understand the relative effects of natural processes and human activities over a sparsely gauged CRV basin. Lake storage estimates were calculated from a hydrologic model constructed without inputs from human impacts such as water abstraction and compared with satellite‐based (observed) lake storage measurements to characterize the magnitude of human‐induced impacts. A non‐parametric Mann–Kendall test was used to detect the presence of climatic trends (e.g. a decreasing or increasing trends in precipitation), while the Standard Precipitation Index (SPI) analysis was used to assess the long‐term, inter‐annual climate variability within the basin. Results indicate human activities (e.g. abstraction) significantly contributed to the changes in the hydrology of the lakes, while no statistically significant climatic trend was seen in the basin, however inter‐annual natural climate variability, extreme dryness, and prolonged drought has negatively affected the lakes. The relative contributions of natural and human‐induced impacts on the lakes were quantified and evaluated by comparing hydrographs of the CRV lakes. Lake Abiyata has lost ~6.5 m in total lake height between 1985 and 2006, 70% (~4.5 m) of the loss has been attributed to human‐induced causes, whereas the remaining 30% is related to natural climate variability. The relative impact analysis utilized in this study could potentially be used to better plan and create effective water‐management practices in the basin and demonstrates the utility of this integrated methodology for similar studies assessing the relative natural and human‐induced impacts on lakes in data sparse areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
188.
Maize growth has great effects on soil properties and thus likely induces the changes in soil erosion resistance on sloping farmland. However, temporal variation of soil erosion resistance during the growth stages of maize is still unclear in the mountainous yellow soil area where maize is the dominant crop. In this study, four maize plots (MP) and four bare land plots (CK) were conducted to investigate soil erosion resistance, and multiple indicators of soil erosion resistance were measured including the total soil anti-scourability (TAS), mean weight diameter (MWD), soil erodibility K factor and soil shear strength (SH). A comprehensive soil erosion resistance index (CSERI) was employed to quantify the temporal variation of soil erosion resistance during the growth stages of maize (seedling stage, SS; jointing stage, JS; tasselling stage, TS; maturing stage, MS). The results showed that TAS, MWD, SH increased significantly with maize growth and SH decreased when at MS. But K factor decreased significantly over time. CSERI increased significantly during the growth stages of maize and the CSERI of JS, TS, MS increased on average by 74.72, 180.68 and 234.57% than that of SS. Compared to CK, CSERI of MP increased by 49.90, 66.82, 55.60 and 38.61% during the growth stages of maize. The temporal variation of soil erosion resistance was closely related to the changes in maize cover, maize roots and soil organic carbon. The findings demonstrated that it is necessary to consider the temporal variation of soil erosion resistance in the mountainous yellow soil area.  相似文献   
189.
River confluences and their associated tributaries are key morphodynamic nodes that play important roles in controlling hydraulic geometry and hyporheic water exchange in fluvial networks. However, the existing knowledge regarding hyporheic water exchange associated with river confluence morphology is relatively scarce. On January 14 and 15, 2016, the general hydraulic and morphological characteristics of the confluent meander bend (CMB) between the Juehe River and the Haohe River in the southern region of Xi'an City, Shaanxi Province, China, were investigated. The patterns and magnitudes of vertical hyporheic water exchange (VHWE) were estimated based on a one‐dimensional heat steady‐state model, whereas the sediment vertical hydraulic conductivity (Kv) was calculated via in situ permeameter tests. The results demonstrated that 6 hydrodynamic zones and their extensions were observed at the CMB during the test period. These zones were likely controlled by the obtuse junction angle and low momentum flux ratio, influencing the sediment grain size distribution of the CMB. The VHWE patterns at the test site during the test period mostly showed upwelling flow dominated by regional groundwater discharging into the river. The occurrence of longitudinal downwelling and upwelling patterns along the meander bend at the CMB was likely subjected to the comprehensive influences of the local sinuosity of the meander bend and regional groundwater discharge and finally formed regional and local flow paths. Additionally, in dominated upwelling areas, the change in VHWE magnitudes was nearly consistent with that in Kv values, and higher values of both variables generally occurred in erosional zones near the thalweg paths of the CMB, which were mostly made up of sand and gravel. This was potentially caused by the erosional and depositional processes subjected to confluence morphology. Furthermore, lower Kv values observed in downwelling areas at the CMB were attributed to sediment clogging caused by local downwelling flow. The confluence morphology and sediment Kv are thus likely the driving factors that cause local variations in the VHWE of fluvial systems.  相似文献   
190.
The urban environment modifies the hydrologic cycle resulting in increased runoff rates, volumes, and peak flows. Green infrastructure, which uses best management practices (BMPs), is a natural system approach used to mitigate the impacts of urbanization onto stormwater runoff. Patterns of stormwater runoff from urban environments are complex, and it is unclear how efficiently green infrastructure will improve the urban water cycle. These challenges arise from issues of scale, the merits of BMPs depend on changes to small‐scale hydrologic processes aggregated up from the neighborhood to the urban watershed. Here, we use a hyper‐resolution (1 m), physically based hydrologic model of the urban hydrologic cycle with explicit inclusion of the built environment. This model represents the changes to hydrology at the BMP scale (~1 m) and represents each individual BMP explicitly to represent response over the urban watershed. Our study varies both the percentage of BMP emplacement and their spatial location for storm events of increasing intensity in an urban watershed. We develop a metric of effectiveness that indicates a nonlinear relationship that is seen between percent BMP emplacement and storm intensity. Results indicate that BMP effectiveness varies with spatial location and that type and emplacement within the urban watershed may be more important than overall percent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号