首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   417篇
  免费   50篇
  国内免费   72篇
测绘学   1篇
地球物理   160篇
地质学   310篇
海洋学   11篇
综合类   6篇
自然地理   51篇
  2023年   4篇
  2022年   7篇
  2021年   11篇
  2020年   14篇
  2019年   14篇
  2018年   14篇
  2017年   16篇
  2016年   17篇
  2015年   15篇
  2014年   13篇
  2013年   15篇
  2012年   16篇
  2011年   20篇
  2010年   10篇
  2009年   19篇
  2008年   33篇
  2007年   30篇
  2006年   17篇
  2005年   22篇
  2004年   23篇
  2003年   21篇
  2002年   21篇
  2001年   19篇
  2000年   20篇
  1999年   24篇
  1998年   15篇
  1997年   12篇
  1996年   12篇
  1995年   10篇
  1994年   12篇
  1993年   11篇
  1992年   5篇
  1991年   5篇
  1990年   6篇
  1989年   8篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1978年   1篇
排序方式: 共有539条查询结果,搜索用时 171 毫秒
21.
Two distinct phases are commonly observed at the initial part of seismograms of large shallow earthquakes: low-frequency and low-amplitude waves following the onset of a P wave ( P 1) are interrupted by the arrival of the second impulsive phase P2 enriched with high-frequency components. This observation suggests that a large shallow earthquake involves two qualitatively different stages of rupture at its nucleation.
We propose a theoretical model that can naturally explain the above nucleation behaviour. The model is 2-D and the deformation is assumed to be anti-plane. A key clement in our model is the assumption of a zone in which numbers of pre-existing cracks are densely distributed; this cracked zone is a model for the fault zone. Dynamic crack growth nucleated in such a zone is intensely affected by the crack interactions, which exert two conflicting effects: one tends to accelerate the crack growth, and the other tends to decelerate it. The accelerating and decelerating effects are generally ascribable to coplanar and non-coplanar crack interactions, respectively. We rigorously treat the multiple interactions among the cracks, using the boundary integral equation method (BIEM), and assume the critical stress fracture criterion for the analysis of spontaneous crack propagation.
Our analysis shows that a dynamic rupture nucleated in the cracked zone begins to grow slowly due to the relative predominance of non-coplanar interactions. This process radiates the P1 phase. If the crack continues to grow, coalescence with adjacent coplanar cracks occurs after a short time. Then, coplanar interactions suddenly begin to prevail and crack growth is accelerated; the P2 phase is emitted in this process. It is interpreted that the two distinct phases appear in the process of the transition from non-coplanar to coplanar interaction predominance.  相似文献   
22.
There have been several claims that seismic shear waves respond to changes in stress before earthquakes. The companion paper develops a stress-sensitive model (APE) for the behaviour of low-porosity low-permeability crystalline rocks containing pervasive distributions of fluid-filled intergranular microcracks, and this paper uses APE to model the behaviour before earthquakes. Modelling with APE shows that the microgeometry and statistics of distributions of such fluid-filled microcracks respond almost immediately to changes in stress, and that the behaviour can be monitored by analysing seismic shear-wave splitting. The physical reasons for the coupling between shear-wave splitting and differential stress are discussed.
In this paper, we extend the model by using percolation theory to show that large crack densities are limited at the grain-scale level by the percolation threshold at which interacting crack clusters lead to pronounced increases in rock-matrix permeability. In the simplest formulation, the modelling is dimensionless and almost entirely constrained without free parameters. Nevertheless, APE modelling of the evolution of fluid-saturated rocks under stress reproduces the observed fracture criticality and the narrow range of shear-wave azimuthal anisotropy in crustal rocks. It also reproduces the behaviour of temporal variations in shear-wave splitting observed before and after the 1986, M = 6, North Palm Springs earthquake, Southern California, and several other smaller earthquakes.
The agreement of APE modelling with a wide range of observations confirms that fluid-saturated crystalline rocks are stress-sensitive and respond to changes in stress by critical fluid-rock interactions at the microscale level. This means that the effects of changes in stress and other parameters can be numerically modelled and monitored by appropriate observations of seismic shear waves.  相似文献   
23.
Fluid flow in fractured rock is an increasingly central issue in recovering water and hydrocarbon supplies and geothermal energy, in predicting flow of pollutants underground, in engineering structures, and in understanding large-scale crustal behaviour. Conventional wisdom assumes that fluids prefer to flow along fractures oriented parallel or nearly parallel to modern-day maximum horizontal compressive stress, or SHmax. The reasoning is that these fractures have the lowest normal stresses across them and therefore provide the least resistance to flow. For example, this view governs how geophysicists design and interpret seismic experiments to probe fracture fluid pathways in the deep subsurface. Contrary to these widely held views, here we use core, stress measurement, and fluid flow data to show that SHmax does not necessarily coincide with the direction of open natural fractures in the subsurface (>3 km depth). Consequently, in situ stress direction cannot be considered to predict or control the direction of maximum permeability in rock. Where effective stress is compressive and fractures are expected to be closed, chemical alteration dictates location of open conduits, either preserving or destroying fracture flow pathways no matter their orientation.  相似文献   
24.
The nature and style of emplacement of Continental Flood Basalt (CFB) lava flows has been a matter of great interest as well as considerable controversy in the recent past. However, even a cursory review of published literature reveals that the Columbia River Basalt Group (CRBG) and Hawaiian volcanoes provide most of the data relevant to this topic. It is interesting to note, however, that the CRBG lava flows and their palaeotopographic control is atypical of other CFB provinces in the world. In this paper, we first present a short overview of important studies pertaining to the emplacement of flood basalt flows. We then briefly review the morphology of lava flows from the Deccan Volcanic Province (DVP) and the Columbia-Oregon Plateau flood basalts. The review underscores the existence of significant variations in lava flow morphology between different provinces, and even within the same province. It is quite likely that there were more than one way of emplacing the voluminous and extensive CFB lava flows. We argue that the establishment of general models of emplacement must be based on a comprehensive documentation of lava flow morphology from all CFB provinces.  相似文献   
25.
26.
基于二维小波变换的FMI图象分割   总被引:1,自引:0,他引:1  
为了从FMI资料中定量提取参数,一个重要的步骤是从实际FMI资料中分离出反映溶孔、溶洞、裂缝的子图像。本文给出的方法,考虑图像像元邻域的特征,应用二维小波变换求出目标与背景边缘的点集,按这个边缘点集的坐标点所对应的原图像像素灰度值的平均值作为分割阈值进行图像分割。实际资料处理表明,应用这种方法可以从实际的FMI资料中准确地分割出孔洞、裂缝的子图像并且可以按深度段连续自动处理,为后续定量计算参数奠定了良好基础。  相似文献   
27.
Signatures in flowing fluid electric conductivity logs   总被引:1,自引:0,他引:1  
Flowing fluid electric conductivity logging provides a means to determine hydrologic properties of fractures, fracture zones, or other permeable layers intersecting a borehole in saturated rock. The method involves analyzing the time-evolution of fluid electric conductivity (FEC) logs obtained while the well is being pumped and yields information on the location, hydraulic transmissivity, and salinity of permeable layers. The original analysis method was restricted to the case in which flows from the permeable layers or fractures were directed into the borehole (inflow). Recently, the method was adapted to permit treatment of both inflow and outflow, including analysis of natural regional flow in the permeable layer. A numerical model simulates flow and transport in the wellbore during flowing FEC logging, and fracture properties are determined by optimizing the match between simulation results and observed FEC logs. This can be a laborious trial-and-error procedure, especially when both inflow and outflow points are present. Improved analyses methods are needed. One possible tactic would be to develop an automated inverse method, but this paper takes a more elementary approach and focuses on identifying the signatures that various inflow and outflow features create in flowing FEC logs. The physical insight obtained provides a basis for more efficient analysis of these logs, both for the present trial and error approach and for a potential future automated inverse approach. Inflow points produce distinctive signatures in the FEC logs themselves, enabling the determination of location, inflow rate, and ion concentration. Identifying outflow locations and flow rates typically requires a more complicated integral method, which is also presented in this paper.  相似文献   
28.
All methods of seismic characterization of fractured reservoirs are based on effective media theories that relate geometrical and material properties of fractures and surrounding rock to the effective stiffnesses. In exploration seismology, the first-order theory of Hudson is the most popular. It describes the effective model caused by the presence of a single set of thin, aligned vertical fractures in otherwise isotropic rock. This model is known to be transversely isotropic with a horizontal symmetry axis (HTI). Following the theory, one can invert the effective anisotropy for the crack density and type of fluid infill of fractures, the quantities of great importance for reservoir appraisal and management.Here I compute effective media numerically using the finite element method. I deliberately construct models that contain a single set of vertical, ellipsoidal, non-intersecting and non-interconnected fractures to check validity of the first-order Hudson’s theory and establish the limits of its applicability. Contrary to conventional wisdom that Hudson’s results are accurate up to crack density e ≈ 0.1, I show that they consistently overestimate the magnitudes of all effective anisotropic coefficients ε(V), δ(V), and γ(V). Accuracy of theoretically derived anisotropy depends on the type of fluid infill and typically deteriorates as e grows. While the theory gives | ε(V)|, |δ(V)|, |γ(V)| and close to the upper bound of the corresponding numerically obtained values for randomly distributed liquid-filled fractures, theoretical predictions of ε(V), δ(V) are not supported by numerical computations when the cracks are dry. This happens primarily because the first-order Hudson’s theory makes no attempt to account for fracture interaction which contributes to the final result much stronger for gas- than for liquid-filled cracks. I find that Mori-Tanaka’s theory is superior to Hudson’s for all examined crack densities and both types of fluid infill.The paper was presented at the 11th International Workshop on Seismic Anisotropy (11IWSA) held in St. John’s, Canada in 2004.  相似文献   
29.
This work describes a constitutive framework for modeling the behavior of rough joints under cyclic loading. Particular attention is paid to the intrinsic links between dilatancy, surface degradation, and mobilized shear strength. The framework also accounts for the important effect of shear‐induced anisotropy. The resulting approach is fully three‐dimensional and is not restricted to plane‐displacement kinematics. Both the governing formulation and an algorithm for implicit numerical integration are presented. While the proposed methods are general, we also postulate a specific model that is compared with experimental data. It employs relatively few free parameters but shows good agreement with laboratory tests. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
30.
Karst aquifers are well known for their intricate stratigraphy and geologic structures, which make groundwater characterization challenging because flowpaths and recharge sources are complex and difficult to evaluate. Geochemical data, collected from ten closely spaced production wells constructed in two karst aquifers (Bangor Limestone (Mb) and Tuscumbia Limestone/Fort Payne Chert (Mftp)) in Trussville, north‐central Alabama, illustrate two distinctive groundwater end‐members: (1) higher major ion, dissolved inorganic carbon, conductivity, alkalinity concentrations, heavier δ13C ratios (max: −10.2 ± 0.2‰ Vienna Pee Dee Belemnite (PDB)) and lower residence times (mean: 19.5 ± 2 years, n = 2) of groundwater in the Mb aquifer and (2) lower constituent concentrations, lighter δ13C ratios (min: −13.4 ± 0.2‰ PDB) and longer residence times of groundwater (mean: 23.6 ± 2 years, n = 4) in the Mftp aquifer. Summer and fall data and the binary mixing model show aquifer inter‐flow mixing along solution fractures and confirms the distinctive groundwater geochemistry of the two aquifers. Lowering of static water levels over the summer (drawdown from 2 to 5.2 m) leads to more reducing groundwater conditions (lower Eh values) and slightly enriched δ18O and δD ratios during the fall [δ18O: −4.8 ± 0.1 to −5.4 ± 0.1‰ Vienna Standard Mean Oceanic Water (VSMOW), n = 9; δD: −25.4 ± 1 to −27.4 ± 1‰ VSMOW, n = 9] when compared with summer season samples (δ18O: −5.1 ± 0.1 to −5.7 ± 0.1‰ VSMOW, n = 11; δD: −25.0 ± 1 to −30.6 ± 1‰ VSMOW, n = 11). GIS analyses confirm the localized origin of recharge to the investigated aquifers. The combination of GIS, field parameters and geochemistry analyses can be successfully used to identify recharge sources, evaluate groundwater flow and transport pathways and to improve understanding of how groundwater withdrawals impact the sustainability and susceptibility to contamination of karst aquifers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号