首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   24篇
  国内免费   41篇
测绘学   4篇
大气科学   15篇
地球物理   22篇
地质学   17篇
海洋学   97篇
天文学   1篇
综合类   20篇
自然地理   54篇
  2023年   2篇
  2022年   7篇
  2021年   10篇
  2020年   4篇
  2019年   18篇
  2018年   5篇
  2017年   8篇
  2016年   3篇
  2015年   11篇
  2014年   23篇
  2013年   15篇
  2012年   13篇
  2011年   18篇
  2010年   12篇
  2009年   14篇
  2008年   9篇
  2007年   8篇
  2006年   9篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1989年   2篇
  1983年   1篇
排序方式: 共有230条查询结果,搜索用时 46 毫秒
141.
We investigated the abundance of different picophytoplankton groups and the phytoplankton pigment ratio in relation to environmental factors such as nutrients and suspended solids along a salinity gradient in the Changjiang River Estuary. The average numbers of Synechococcus spp.(Syn) and picoeukaryotes(Euk) were(2.7 ±5.1) ×103 and(1.1±1.4) ×103 cells m L-1, respectively. Prochlorococcus spp.(Pro) was only found in the high-salinity brackish water with the concentration of 3.0×103 cells m L-1. Syn and Euk numbers both tended to increase offshore and Syn showed a larger variation in cell abundance than Euk. The contribution of picophytoplankton to total phytoplankton biomass increased with increasing salinity and decreasing nutrient concentrations from the estuary to the open ocean. The response of different picophytoplankton groups to environmental variables was different. Water temperature was more important in its control over Euk than over Syn, while nutrients were more important in their influence over Syn than over Euk. Phytoplankton pigment ratios were different in the three different ecological zones along the salinity gradient(i.e., freshwater zone with 0-5 range, fresh and saline water mixing zone with 5-20 range, and high-salinity brackish water zone with 20-32 range), where three different phytoplankton communities were discovered, suggesting that phytoplankton pigment ratios can be considered as a complementary indicator of phytoplankton community structure in the Changjiang River Estuary.  相似文献   
142.
Eukaryotic phytoplankton such as diatoms and prymnesiophytes produce biogenic halocarbons in the ocean that serve as important sources of chlorine and bromine to the atmosphere, but the role of cyanobacteria in halocarbon production is not well established. We studied distributions of chloroform (CHCl3), carbon tetrachloride (CCl4), methylene bromide (CH2Br2) and bromoform (CHBr3) in relation to phytoplankton composition, determined from pigment analysis complemented by microscopic examination, for one month in coastal waters of the eastern Arabian that experienced a Trichodesmium bloom that typically occurs during the Spring Intermonsoon season. High concentrations of zeaxanthin (23 μg l−1), alpha beta betacarotene (6 μg l−1) and chlorophyll a (67 μg l−1) were found within the bloom whereas the marker pigment concentrations were low outside the bloom. CHCl3 and CCl4 occurred in relatively high concentrations in surface waters whereas CH2Br2 and CHBr3 were restricted to the subsurface layer. Chlorinated halocarbons were positively inter-correlated and with CHBr3. The observed spatial and temporal trends in brominated compounds appear to be related to the abundance of Trichodesmium although correlations between concentrations of brominated compounds with various marker pigments were poor and statistically non-significant. The results support the existence of multiple sources and sinks of halogenated compounds, which might obscure the relationship between halocarbons and phytoplankton composition.  相似文献   
143.
正Sediment records from Tibetan lakes record dramatic climatic variability of the Tibetan Plateau in NW China during the Holocene.Here we investigated ancient communities of photosynthetic microbial communities in  相似文献   
144.
不同品系条斑紫菜光合效率比较研究   总被引:4,自引:0,他引:4  
用叶绿素荧光仪测试了7个品系紫菜叶状体在不同光照和温度条件下的光合效率,分析了受强光抑制后光合效率恢复的情况,并测试了这些品系的光合色素含量。结果显示,随着光照强度从20μmol.m-2.s-1提高到1 200μmol.m-2.s-1,总的趋势是光合效率逐渐降低,但下降幅度在不同品系间又有差异:相比20μmol.m-2.s-1光照下条件下光合效率,Yjs在1 200μmol.m-2.s-1时的光合效率下降了27%,Yw下降了33%,Gm下降了53%,Yqd下降了50%。在120μmol.m-2.s-1光照条件,5~20℃实验范围内,15~20℃条件下光合效率最高,除Yh2和Wjs,其它品系叶状体均在15℃达到顶峰,Yh2和Wjs则在20℃达到顶峰。在受到高光抑制(200μmol.m-2.s-1)后,处于光照60μmol.m-2.s-1,温度12℃条件下紫菜光合效率可在30~60 min内恢复。未发现光合色素含量与光合效率的相关性。文章还对紫菜光合效率与生态条件的关系进行了分析和讨论。  相似文献   
145.
Phytoplankton group-specific growth and microzooplankton grazing were determined seasonally using the dilution technique with high-performance liquid chromatography (HPLC) in the Xiamen Bay, a subtropical bay in southeast China, between May 2003 and February 2004. The results showed that growth rates of phytoplankton ranged from 0.71 to 2.2 d^-1 with the highest value occurred in the inner bay in May. Mierozooplankton grazing rates ranged from 0.5 to 3.1 d^-1 with the highest value occurred in the inner bay in August. Microzooplankton grazing impact ranged from 39% to 95% on total phytoplankton Chl a biomass, and 65% to 181% on primary production. The growth and grazing rates of each phytoplankton group varied, the highest growth rate (up to 3.3 d^-1 ) was recorded for diatoms in August, while the maximum grazing rate ( up to 2.1 d ^-1 ) was recorded for chlorophytes in February in the inner bay. Among main phytoplankton groups, grazing pressure of microzooplankton ranged from 10% to 83% on Chl a biomass, and from 14% to 151% on primary production. The highest grazing pressure on biomass was observed for cryptophytes (83%) in August, while the maximum grazing pressure on primary production was observed for eyanobacteria (up to 151% ) in December in the inner bay. Net growth rates of larger phytoplanktons (diatoms and dinoflagellates) were higher than those of smaller groups ( prasinophytes, chlorophytes and cyanobacteria). Relative preference index showed that microzooplankton grazed preferentially on prasinophytes and avoided to harvest diatoms in cold seasons (December and February).  相似文献   
146.
Variations in phytoplankton pigments and community composition were examined in the Gulf of Gabes in relationship to water mass properties, characterised by the influence of the Modified Atlantic Water and by the thermal stratification. Data were collected on board the R/V Hannibal during July 2005.Distinct water masses were identified using cluster analysis of temperature–salinity (TS) characteristics. Three major clusters appeared based on the combined effects of temperature and salinity. The first cluster was identified as the cool and less salty bottom Modified Atlantic Water (MAW). The warmer and saltier Mediterranean Mixed Water (MMW) represented the second cluster. The third cluster was the Transition Water (TW) separating the two previous clusters.The pigment and taxonomic composition of these water masses were examined. Chlorophyll a was rather low (<200 ng l−1). Chlorophyll b was generally the most abundant accessory pigment and fucoxanthin dominated the accessory pigments in the MAW. Proportions of chlorophyll a associated with different phytoplankton classes were estimated using CHEMTAX software, and did not present significant variations among water groups. The results pointed out variations in the relative contribution of each phytoplankton taxa in each station group. Chlorophytes and prasinophytes accounted for 65% of chlorophyll a in the MMW. Diatoms and chlorophytes were relatively abundant in the MAW contributing to almost 63% of chlorophyll a. An unstructured community, slightly dominated by prasinophytes, chlorophytes and cryptophytes, characterised the TW. Different trophic statuses were observed in these water masses, the MMW and the MAW being characterised by mesotrophy, while an oligotrophy was observed in the TW. Nutrient availability, particularly the P-limitation supported by the summer stratification, as revealed by the high N:P ratio (greater than 20), seems to enhance the development of small-sized phytoplankton, thereby supporting the regenerated production.  相似文献   
147.
The marine chroococcoid phycoerythrin-containing Synechococcus spp.cyanobacterium has been impli-cated as a subsetantial component of the photosynthetic picoplankton in the ocean. Although its imppr-tance as food source for heterotrophic nanoplankton is now recognized, information about the cycling ofSynechococcus biomass and its diel pattern is limited and study methodology varies among authors. Theselective metabolic inhibitor method was used to simultaneously estimate growth and grazing disappearancerates of Synechococcus in the English Channel where growth rates ranged from 0.25 to 0.72/d (mean±SD=0.51±0.17/d) and grazing mortality rates ranged from 0.19 to 0.64/d (mean ±SD=0.48±0.17/d).Size-fractionated experiments demonstrated that up to 70% of Synechosoccus disappearance could be attri-buted to grazers going through a 2 μm Nuclepore filter. Synechococcus grazing mortality rates (mean=0.74±0.25/d) during the day were alwnys higher than that (mean=0.21±0.20d) during the night, while growthrat  相似文献   
148.
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February–March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–209.2)×106 and (0.75–15.4)×106 cells/cm2 in the abundance, and 1.93–52.3 and 1.57–32.4 μgC/cm2 in the carbon biomass, for SYN and PEUK, respectively. The horizontal distributions of both groups were diurnal but heterogeneous in abundance, depending on the groups and layer of depths. Temperature is the key controlling factor for picophytoplankton distribution (especially in winter) in the Strait. Supported by Natural Science Foundation of China (No.40730846; 40521003)  相似文献   
149.
The size-fractionated phytoplankton biomass, and the spatial and temporal variations in abundance of Synechococcus (SYN) and picoeukaryotes (PEUK) were measured in the Taiwan Strait during three cruises (August 1997, February-March 1998, and August 1998). The results show that picophytoplankton and nanophytoplankton dominate the phytoplankton biomass, in average of 38% and 40%, respectively. SYN and PEUK varied over time in abundance and carbon biomass, greater in summer than in winter, in range of (7.70–20...  相似文献   
150.
During spring and autumn of 2006,the investigations on abundance,carbon biomass and distribution of picoplankton were carried out in the southern Huanghai Sea(Yellow Sea,sHS) . Three groups of picoplankton-Synechococcus(Syn) ,Picoeukaryotes(PEuk) and heterotrophic bacteria(BAC) were identified,but Prochlorococcus(Pro) was undetected. The average abundance of Syn and PEuk was lower in spring(5.0 and 1.3 × 10 3 cells/cm 3,respectively) than in autumn(92.4 and 2.7 × 10 3 cells/cm 3,respectively) ,but it was opposite for BAC(1.3 and 0.7 × 10 6 cells/cm 3 in spring and autumn,respectively) . And the total carbon biomass of picoplankton was higher in spring(37.23 ± 11.67) mg/m 3 than in autumn(21.29 ± 13.75) mg/m 3 . The ratios of the three cell abundance were 5:1:1 341 and 30:1:124 in spring and autumn,respectively. And the ratios of carbon biomass of them were 5:7:362 and 9:4:4 in spring and autumn,respectively. Seasonal distribution characteristics of Syn,PEuk,BAC were quite different from each other. In spring,Syn abundance decreased in turn in the central waters(where phytoplankton bloom in spring occurred) ,the southern waters and inshore waters of the Shandong Peninsula(where even Syn was undetected) ;the high values of PEuk abundance appeared in the central and southern waters and the inshore of the Shandong Peninsula;the abundance of BAC was nearly three order of magnitude higher than that of photosynthetic picoplankton,and high values appeared in the central waters. In autumn,Syn abundance in central waters was higher than that in surrounding waters,while for PEuk abundance,it decreased in turn in the inshore waters of the Shandong Peninsula,the southern waters and the central waters;BAC presented a complicated blocky type distribution. Sub-surface maximum of each group of picopalnkton appeared in both spring and autumn. Compared with the available literatures concerning the studied area,the range of Syn abundance was larger,and the abundance of BAC was higher. In addition,the conversion factors for calculating picoplanktonic carbon biomass were discussed,with the conversion factors which are different from previous studies in the same surveyed waters. The result of regression analysis showed that there was distinct positive correlation between BAC and photosynthetic picoplankton in spring(r=0.61,P 0.001) ,but no correlation was found in autumn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号