首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13605篇
  免费   2432篇
  国内免费   4359篇
测绘学   877篇
大气科学   1519篇
地球物理   3182篇
地质学   9210篇
海洋学   1216篇
天文学   649篇
综合类   770篇
自然地理   2973篇
  2024年   54篇
  2023年   180篇
  2022年   509篇
  2021年   602篇
  2020年   680篇
  2019年   742篇
  2018年   679篇
  2017年   559篇
  2016年   721篇
  2015年   742篇
  2014年   963篇
  2013年   1056篇
  2012年   887篇
  2011年   1023篇
  2010年   854篇
  2009年   1029篇
  2008年   1030篇
  2007年   994篇
  2006年   1111篇
  2005年   855篇
  2004年   802篇
  2003年   647篇
  2002年   595篇
  2001年   474篇
  2000年   437篇
  1999年   373篇
  1998年   332篇
  1997年   271篇
  1996年   246篇
  1995年   192篇
  1994年   166篇
  1993年   122篇
  1992年   121篇
  1991年   83篇
  1990年   66篇
  1989年   50篇
  1988年   42篇
  1987年   18篇
  1986年   21篇
  1985年   16篇
  1984年   18篇
  1983年   8篇
  1982年   4篇
  1981年   6篇
  1980年   2篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
  1973年   2篇
  1954年   4篇
排序方式: 共有10000条查询结果,搜索用时 50 毫秒
61.
This article describes the observations of a type III radio burst observed at 103 MHz simultaneously by the two radio telescopes situated at Rajkot (22.3°N, 70.7°E) and Thaltej (23°N, 72.4°E). This event occurred on September 30, 1993 at about 0430 UT and lasted for only half a minute. The event consisted of several sharp spikes in a group. The rise and fall time of these are comparable, however the peaks of individual spikes varied by a factor of four. The comparison of these observations with the data of solar radio spectrograph HiRAS indicates that this was a metric radio burst giving highest emission at about 103 MHz.  相似文献   
62.
Supercritical gas sorption on moist coals   总被引:2,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   
63.
Magnetotelluric investigations have been carried out in the Garhwal Himalayan corridor to delineate the electrical structure of the crust along a profile extending from Indo-Gangetic Plain to Higher Himalayan region in Uttarakhand, India. The profile passing through major Himalayan thrusts: Himalayan Frontal Thrust (HFF), Main Boundary Thrust (MBT) and Main Central Thrust (MCT), is nearly perpendicular to the regional geological strike. Data processing and impedance analysis indicate that out of 44 stations MT data recorded, only 27 stations data show in general, the validity of 2D assumption. The average geoelectric strike, N70°W, was estimated for the profile using tensor decomposition. 2D smooth geoelectrical model has been presented, which provides the electrical image of the shallow and deeper crustal structure. The major features of the model are (i) a low resistivity (<50Ωm), shallow feature interpreted as sediments of Siwalik and Indo-Gangetic Plain, (ii) highly resistive (> 1000Ωm) zone below the sediments at a depth of 6 km, interpreted as the top surface of the Indian plate, (iii) a low resistivity (< 10Ωm) below the depth of 6 km near MCT zone coincides with the intense micro-seismic activity in the region. The zone is interpreted as the partial melting or fluid phase at mid crustal depth. Sensitivity test indicates that the major features of the geoelectrical model are relevant and desired by the MT data.  相似文献   
64.
杜米芳 《岩矿测试》2008,27(2):146-148
通过选择分析谱线、处理样品方法和消除干扰因素等实验,建立了电感耦合等离子体发射光谱法同时测定玻璃中的Al2O3、CaO、Fe2O3、K2O、MgO、Na2O、TiO2和SO3的方法,克服了利用常规化学法测定玻璃中各氧化物步骤繁琐、耗时长、工作量大的不足。方法的回收率为95.0%~103.0%,精密度(RSD,n=10)为0.20%~1.72%。方法具有快速、简便、线性范围宽等优点,分析误差满足常规化学分析法的要求。用于钠钙硅玻璃及其制品的分析,结果令人满意。  相似文献   
65.
土壤中氟的形态分析   总被引:11,自引:3,他引:8  
以宁夏盐池地区高氟土壤为例,采用连续提取法对土壤样品中各形态氟进行提取,离子色谱法测定各形态氟的含量。根据研究目的及土壤特点将氟的形态划分为水溶态、离子交换态、可还原态、可氧化态及残渣态5种形态;对各种形态连续提取过程中使用的提取液进行了选择。采用建立的方法获得提取土壤中F-的检出限为0.76μg/g;方法精密度(RSD,n=7)各形态氟为水溶态氟11.3%,离子交换态氟13.5%,可还原态氟10.7%,可氧化态氟8.9%。  相似文献   
66.
Quick-look assessments to identify optimal CO2 EOR storage sites   总被引:1,自引:0,他引:1  
A newly developed, multistage quick-look methodology allows for the efficient screening of an unmanageably large number of reservoirs to generate a workable set of sites that closely match the requirements for optimal CO2 enhanced oil recovery (EOR) storage. The objective of the study is to quickly identify miscible CO2 EOR candidates in areas that contain thousands of reservoirs and to estimate additional oil recovery and sequestration capacities of selected top options through dimensionless modeling and reservoir characterization. Quick-look assessments indicate that the CO2 EOR resource potential along the US Gulf Coast is 4.7 billion barrels, and CO2 sequestration capacity is 2.6 billion metric tons. In the first stage, oil reservoirs are screened and ranked in terms of technical and practical feasibility for miscible CO2 EOR. The second stage provides quick estimates of CO2 EOR potential and sequestration capacities. In the third stage, a dimensionless group model is applied to a selected set of sites to improve the estimates of oil recovery and storage potential using appropriate inputs for rock and fluid properties, disregarding reservoir architecture and sweep design. The fourth stage validates and refines the results by simulating flow in a model that describes the internal architecture and fluid distribution in the reservoir. The stated approach both saves time and allows more resources to be applied to the best candidate sites.  相似文献   
67.
Geologic storage of CO2 is expected to produce plumes of large areal extent, and some leakage may occur along fractures, fault zones, or improperly plugged pre-existing wellbores. A review of physical and chemical processes accompanying leakage suggests a potential for self-enhancement. The numerical simulations presented here confirm this expectation, but reveal self-limiting features as well. It seems unlikely that CO2 leakage could trigger a high-energy run-away discharge, a so-called “pneumatic eruption,” but present understanding is insufficient to rule out this possibility. The most promising avenue for increasing understanding of CO2 leakage behavior is the study of natural analogues.  相似文献   
68.
A screening and ranking framework (SRF) has been developed to evaluate potential geologic carbon dioxide (CO2) storage sites on the basis of health, safety, and environmental (HSE) risk arising from CO2 leakage. The approach is based on the assumption that CO2 leakage risk is dependent on three basic characteristics of a geologic CO2 storage site: (1) the potential for primary containment by the target formation; (2) the potential for secondary containment if the primary formation leaks; and (3) the potential for attenuation and dispersion of leaking CO2 if the primary formation leaks and secondary containment fails. The framework is implemented in a spreadsheet in which users enter numerical scores representing expert opinions or published information along with estimates of uncertainty. Applications to three sites in California demonstrate the approach. Refinements and extensions are possible through the use of more detailed data or model results in place of property proxies.  相似文献   
69.
This paper reports a preliminary investigation of CO2 sequestration and seal integrity at Teapot Dome oil field, Wyoming, USA, with the objective of predicting the potential risk of CO2 leakage along reservoir-bounding faults. CO2 injection into reservoirs creates anomalously high pore pressure at the top of the reservoir that could potentially hydraulically fracture the caprock or trigger slip on reservoir-bounding faults. The Tensleep Formation, a Pennsylvanian age eolian sandstone is evaluated as the target horizon for a pilot CO2 EOR-carbon storage experiment, in a three-way closure trap against a bounding fault, termed the S1 fault. A preliminary geomechanical model of the Tensleep Formation has been developed to evaluate the potential for CO2 injection inducing slip on the S1 fault and thus threatening seal integrity. Uncertainties in the stress tensor and fault geometry have been incorporated into the analysis using Monte Carlo simulation. The authors find that even the most pessimistic risk scenario would require ∼10 MPa of excess pressure to cause the S1 fault to reactivate and provide a potential leakage pathway. This would correspond to a CO2 column height of ∼1,500 m, whereas the structural closure of the Tensleep Formation in the pilot injection area does not exceed 100 m. It is therefore apparent that CO2 injection is not likely to compromise the S1 fault stability. Better constraint of the least principal stress is needed to establish a more reliable estimate of the maximum reservoir pressure required to hydrofracture the caprock.  相似文献   
70.
Eleven surface soil samples from calcareous soils of industrial areas in Hamadan Province, western Iran were analyzed for total concentrations of Zn, Cd, Ni, Cu and Pb and were sequentially extracted into six fractions to determine the bioavailability of various heavy metal forms. Total Zn, Cd, Ni, Cu and Pb concentrations of the contaminated soils were 658 (57–5,803), 125.8 (1.18–1,361), 45.6 (30.7–64.4), 29.7 (11.7–83.5) and 2,419 (66–24,850) mg kg−1, respectively. The soils were polluted with Zn, Pb, and Cu to some extent and heavily polluted with Cd. Nickel values were not above regulatory limits. Copper existed in soil mainly in residual (RES) and organic (OM) fractions (about 42 and 33%, respectively), whereas Zn occurred essentially as RES fraction (about 69%). The considerable presence of Cd (30.8%) and Pb (39%) in the CARB fraction suggests these elements have high potential biavailability and leachability in soils from contaminated soils. The mobile and bioavailable (EXCH and CARB) fractions of Zn, Cd, Ni, Cu, and Pb in contaminated soils averaged (7.3, 40.4, 16, 12.9 and 40.8%), respectively, which suggests that the mobility and bioavailability of the five metals probably decline in the following order: Cd = Pb > Ni > Cu > Zn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号