首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1610篇
  免费   364篇
  国内免费   428篇
测绘学   113篇
大气科学   638篇
地球物理   752篇
地质学   515篇
海洋学   162篇
天文学   1篇
综合类   78篇
自然地理   143篇
  2024年   10篇
  2023年   22篇
  2022年   32篇
  2021年   65篇
  2020年   79篇
  2019年   87篇
  2018年   69篇
  2017年   86篇
  2016年   62篇
  2015年   98篇
  2014年   126篇
  2013年   226篇
  2012年   98篇
  2011年   107篇
  2010年   78篇
  2009年   101篇
  2008年   102篇
  2007年   129篇
  2006年   118篇
  2005年   97篇
  2004年   60篇
  2003年   69篇
  2002年   48篇
  2001年   46篇
  2000年   51篇
  1999年   53篇
  1998年   49篇
  1997年   43篇
  1996年   42篇
  1995年   34篇
  1994年   32篇
  1993年   18篇
  1992年   13篇
  1991年   12篇
  1990年   6篇
  1989年   4篇
  1988年   9篇
  1987年   5篇
  1986年   2篇
  1985年   7篇
  1984年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
排序方式: 共有2402条查询结果,搜索用时 15 毫秒
51.
In our previous study (Earthquake Engineering and Structural Dynamics 2003; 32 :2301), we have developed a probabilistic algorithm for active control of structures. In the probabilistic control algorithm, the control force is determined by the probability that the structural energy exceeds a specified target critical energy, and the direction of a control force is determined by the Lyapunov controller design method. In this paper, an experimental verification of the proposed probabilistic control algorithm is presented. A three‐story test structure equipped with an active mass driver (AMD) has been used. The effectiveness of the control algorithm has been examined by exciting the test structure using a sinusoidal signal, a scaled El Centro earthquake and a broadband Gaussian white noise; and, especially, experiments on control have been performed under different conditions to that of system identification in order to prove the stability and robustness of the proposed control algorithm. The experimental results indicate that the probabilistic control algorithm can achieve a significant response reduction under various types of ground excitations even when the modeling error exists. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
52.
Model identification for hydrological forecasting under uncertainty   总被引:2,自引:2,他引:2  
Methods for the identification of models for hydrological forecasting have to consider the specific nature of these models and the uncertainties present in the modeling process. Current approaches fail to fully incorporate these two aspects. In this paper we review the nature of hydrological models and the consequences of this nature for the task of model identification. We then continue to discuss the history (“The need for more POWER‘’), the current state (“Learning from other fields”) and the future (“Towards a general framework”) of model identification. The discussion closes with a list of desirable features for an identification framework under uncertainty and open research questions in need of answers before such a framework can be implemented.  相似文献   
53.
基于正交多项式逼近法的岩土参数概率分布推断   总被引:9,自引:0,他引:9  
针对岩上参数样本容量较大的情况,基于数值分析中的逼近原理,直接根据试验样本值,运用勒让德正交多项式来拟合岩土参数的概率密度函数,并用K-S检验法从理论上证明所求的密度函数的正确性和实用性。  相似文献   
54.
River flooding is a problem of international interest. In the past few years many countries suffered from severe floods. A large part of the Netherlands is below sea level and river levels. The Dutch flood defences along the river Rhine are designed for water levels with a probability of exceedance of 1/1250 per year. These water levels are computed with a hydrodynamic model using a deterministic bed level and a deterministic design discharge. Traditionally, the safety against flooding in the Netherlands is obtained by building and reinforcing dikes. Recently, a new policy was proposed to cope with increasing design discharges in the Rhine and Meuse rivers. This policy is known as the Room for the River (RfR) policy, in which a reduction of flood levels is achieved by measures creating space for the river, such as dike replacement, side channels and floodplain lowering. As compared with dike reinforcement, these measures may have a stronger impact on flow and sediment transport fields, probably leading to stronger morphological effects. As a result of the latter the flood conveyance capacity may decrease over time. An a priori judgement of safety against flooding on the basis of an increased conveyance capacity of the river can be quite misleading. Therefore, the determination of design water levels using a fixed-bed hydrodynamic model may not be justified and the use of a mobile-bed approach may be more appropriate. This problem is addressed in this paper, using a case study of the river Waal (one of the Rhine branches in the Netherlands). The morphological response of the river Waal to a flood protection measure (floodplain lowering in combination with summer levee removal) is analysed. The effect of this measure is subject to various sources of uncertainty. Monte Carlo simulations are applied to calculate the impact of uncertainties in the river discharge on the bed levels. The impact of the “uncertain” morphological response on design flood level predictions is analysed for three phenomena, viz. the impact of the spatial morphological variation over years, the impact of the seasonal morphological variation and the impact of the morphological variability around bifurcation points. The impact of seasonal morphological variations turns out to be negligible, but the other two phenomena appear to have each an appreciable impact (order of magnitude 0.05–0.1 m) on the computed design water levels. We have to note however, that other sources of uncertainty (e.g. uncertainty in hydraulic roughness predictor), which may be of influence, are not taken into consideration. In fact, the present investigation is limited to the sensitivity of the design water levels to uncertainties in the predicted bed level.  相似文献   
55.
56.
In the summer and fall of 2012, during the GLAD experiment in the Gulf of Mexico, the Consortium for Advanced Research on Transport of Hydrocarbon in the Environment (CARTHE) used several ocean models to assist the deployment of more than 300 surface drifters. The Navy Coastal Ocean Model (NCOM) at 1 km and 3 km resolutions, the US Navy operational NCOM at 3 km resolution (AMSEAS), and two versions of the Hybrid Coordinates Ocean Model (HYCOM) set at 4 km were running daily and delivering 72-h range forecasts. They all assimilated remote sensing and local profile data but they were not assimilating the drifter’s observations. This work presents a non-intrusive methodology named Multi-Model Ensemble Kalman Filter that allows assimilating the local drifter data into such a set of models, to produce improved ocean currents forecasts. The filter is to be used when several modeling systems or ensembles are available and/or observations are not entirely handled by the operational data assimilation process. It allows using generic in situ measurements over short time windows to improve the predictability of local ocean dynamics and associated high-resolution parameters of interest for which a forward model exists (e.g. oil spill plumes). Results can be used for operational applications or to derive enhanced background fields for other data assimilation systems, thus providing an expedite method to non-intrusively assimilate local observations of variables with complex operators. Results for the GLAD experiment show the method can improve water velocity predictions along the observed drifter trajectories, hence enhancing the skills of the models to predict individual trajectories.  相似文献   
57.
James M. Buttle 《水文研究》2016,30(24):4644-4653
The potential for dynamic storage to serve as a metric of basin behaviour was assessed using data from five drainage basins with headwaters on the thick sand and gravel deposits of the Oak Ridges Moraine in southern Ontario, Canada. Dynamic storage was directly correlated with the ratio of variability of δ2H in streamflow relative to that in precipitation. This ratio has previously been shown to be inversely related to basin mean transit time (MTT), suggesting an inverse relationship between dynamic storage and MTT for the study basins. Dynamic storage was also directly correlated with interannual variability in stream runoff, baseflow and baseflow:runoff ratio, implying that basins with smaller dynamic storage have less interannual variability in their streamflow regimes. These preliminary results suggest that dynamic storage may serve as a readily derived and useful metric of basin behaviour for inter‐basin comparisons. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
58.
Understanding how rivers respond to changes in land cover, climate, and subsurface conditions is critical for sustainably managing water resources and ecosystems. In this study, long‐term hydrologic, climate, and satellite data (1973–2012) from the Upper Tahe River watershed (2359 km2) in the Da Hinggan Mountains of northeast China were analysed to quantify the relative hydrologic effects of climate variability (system input) and the combined influences of forest cover change and permafrost thaw (system characteristics) on average annual streamflow (system response) using 2 methods: the sensitivity‐based method and the Kendall–Theil robust line method. The study period was subdivided into a forest harvesting period (1973–1987), a forest stability period (1988–2001), and a forest recovery period (2002–2012). The results indicated that the combined effects of forest harvesting and permafrost thaw on streamflow (+ 47.0 mm) from the forest harvesting period to the forest stability period was approximately twice as large as the effect associated with climate variability (+20.2 mm). Similarly, from the forest stability period to the forest recovery period, the decrease in average annual streamflow attributed to the combined effects of forest recovery and permafrost thaw (?38.0 mm) was much greater than the decrease due to climate variability (?22.2 mm). A simple method was used to separate the distinct impacts of forest cover change and permafrost thaw, but distinguishing these influences is difficult due to changes in surface and subsurface hydrologic connectivity associated with permafrost thaw. The results highlight the need to consider multiple streamflow drivers in future watershed and aquatic ecosystem management. Due to the ecological and hydrological susceptibility to disturbances in the Da Hinggan Mountains, forest harvesting will likely negatively impact ecohydrological processes in this region, and the effects of forest species transition in the forest recovery process should be further investigated.  相似文献   
59.
Prediction intervals (PIs) are commonly used to quantify the accuracy and precision of a forecast. However, traditional ways to construct PIs typically require strong assumptions about data distribution and involve a large computational burden. Here, we improve upon the recent proposed Lower Upper Bound Estimation method and extend it to a multi‐objective framework. The proposed methods are demonstrated using a real‐world flood forecasting case study for the upper Yangtze River Watershed. Results indicate that the proposed methods are able to efficiently construct appropriate PIs, while outperforming other methods including the widely used Generalized Likelihood Uncertainty Estimation approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
60.
High-elevation mountains often constitute for basins important groundwater recharge sources through mountain-front recharge processes. These processes include streamflow losses and subsurface inflow from the mountain block. However, another key recharge process is from irrigation practices, where mountain streamflow is distributed across the irrigated piedmont. In this study, coupled groundwater fluctuation measurements and environmental tracers (18O, 2H, and major ions) were used to identify and compare the natural mountain-front recharge to the anthropogenically induced irrigation recharge. Within the High Atlas mountain front of the Ourika Basin, Central Morocco, the groundwater fluctuation mapping from the dry to wet season showed that recharge beneath the irrigated area was higher than the recharge along the streambed. Irrigation practices in the region divert more than 65% of the stream water, thereby reducing the potential for in-stream groundwater recharge. In addition, the irrigation areas close to the mountain front had greater water table increases (up to 3.5 m) compared with the downstream irrigation areas (<1 m increase). Upstream crops have priority to irrigation with stream water over downstream areas. The latter are only irrigated via stream water during large flood events and are otherwise supplemented by groundwater resources. These changes in water resources used for irrigation practices between upstream and downstream areas are reflected in the spatiotemporal evolution of the stable isotopes of groundwater. In the upstream irrigation area, the groundwater stable isotope values (δ18O: −8.4‰ to −7.4‰) reflect recharge by the diverted stream water. In the downstream irrigation area, the groundwater isotope values are lower (δ18O: −8.1‰ to −8.4‰) due to recharge via the flood water. In the nonirrigation area, the groundwater has the highest stable isotope values (δ18O: −6.8‰ to −4.8‰). This might be due to recharge via subsurface inflow from the mountain block to the mountain front and/or recharge via local low altitude rainfall. These findings highlight that irrigation practices can result in the dominant mountain-front recharge process for groundwater.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号