首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1052篇
  免费   272篇
  国内免费   27篇
测绘学   12篇
大气科学   15篇
地球物理   882篇
地质学   221篇
海洋学   81篇
天文学   7篇
综合类   11篇
自然地理   122篇
  2024年   13篇
  2023年   5篇
  2022年   7篇
  2021年   63篇
  2020年   83篇
  2019年   37篇
  2018年   55篇
  2017年   52篇
  2016年   50篇
  2015年   49篇
  2014年   63篇
  2013年   121篇
  2012年   37篇
  2011年   42篇
  2010年   43篇
  2009年   32篇
  2008年   74篇
  2007年   54篇
  2006年   63篇
  2005年   32篇
  2004年   37篇
  2003年   39篇
  2002年   40篇
  2001年   24篇
  2000年   38篇
  1999年   27篇
  1998年   25篇
  1997年   26篇
  1996年   28篇
  1995年   8篇
  1994年   11篇
  1993年   13篇
  1992年   12篇
  1991年   4篇
  1990年   10篇
  1989年   7篇
  1988年   3篇
  1987年   8篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
  1971年   2篇
排序方式: 共有1351条查询结果,搜索用时 15 毫秒
121.
This study investigated the spatial scaling properties of Canadian flood flows, namely, annual maximum mean 1‐, 5‐ and 7‐day flows using both the product moments (PMs) and probability weighted moments (PWMs). Both approaches demonstrate that flood flows in climatic regions 1 (Pacific), 2 (South British Columbia mountains), 3 (Yukon and northern British Columbia), 6 (Northeastern forest), 7 (Great Lakes and St. Lawrence rivers), 8 (Atlantic), and 10 (Arctic tundra) exhibit simple scaling with scaling exponent θ/H close to 0·90, while flood flows in regions 4 (Prairie provinces), 5 (Northwestern forest), and 9 (Mackenzie) does not with scaling exponent θ/H close to 0·50. The plots of coefficient of variations of flood flows versus drainage area indicate that Cv remains almost constant in regions 1, 2, 3, 6, 7, 8, and 10, while it decreases as drainage area increases in regions 4, 5, and 9. These results demonstrate that the index flood method is applicable in climatic regions 1, 2, 3, 6, 7, 8, and 10, while it is not in climatic regions 4, 5, and 9. The physical backgroud of the simple scaling of flood flows in most Canadian climatic regions is that snowmelt or rain‐on‐snow runoff is a dominant flood‐generating mechanism across the country. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
122.
Continuous monitoring of dissolved organic matter (DOM) character and concentration at hourly resolution is rare, despite the importance of analysing organic matter variability at high‐temporal resolution to evaluate river carbon budgeting, river water health by detecting episodic pollution and to determine short‐term variations in chemical and ecological function. The authors report a 2‐week experiment performed on DOM sampled from Bournbrook, Birmingham, UK, an urban river for which spectrophotometric (fluorescence, absorbance), physiochemical (dissolved organic carbon [DOC], electrical conductivity, pH) and isotopic (D/H) parameters have been measured at hourly frequency. Our results show that the river had sub‐daily variations in both organic matter concentration and characteristics. In particular, after relatively high‐magnitude precipitation events, organic carbon concentration increased, with an associated increase in intensity of both humic‐like and tryptophan‐like fluorescence. D/H isotopic ratio demonstrates different hydrological responses to different rainfall events, and organic matter character reflects this difference. Events with precipitation < 2 mm typically yielded isotopically heavy water with relatively hydrophilic DOM and relatively low specific absorbance. Events with precipitation > 2 mm had isotopically lighter water with higher specific absorbance and a decrease in the proportion of microbially derived to humic‐like fluorescence. In our heavily urbanized catchment, we interpret these signals as one where riverine DOM is dominated by storm sewer‐derived ‘old’ organic matter at low‐rainfall amounts and a mixed signal at high‐precipitation amounts where ‘event’ surface runoff‐derived organic matter dominate during storm sewer and combined sewer overflow routed DOM. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
123.
针对中国河流与海岸交界处感潮河段航运工程水文标准存在的问题,特别是设计水位的确定及其衔接和水流、泥沙分析方法的差异,进行区段划分和标准衔接关系的研究.通过阐述感潮河段区段及基本特征,分析了各类航运工程的水文指标,提出以"月平均潮位年变幅多年平均值" 和"多年平均潮差"两特征值的比值作为感潮河段不同区段划分的依据指标,并通过实例计算,论证了航运工程水文标准分界及其衔接关系.结果表明,该指标反映了感潮河段不同区段水文条件受径流和潮汐的影响程度,依据其不同取值,可对航运工程水文标准予以分界,形成较好的衔接.  相似文献   
124.
Because of their fast response to hydrological events, small catchments show strong quantitative and qualitative variations in their water runoff. Fluxes of solutes or suspended material can be estimated from water samples only if an appropriate sampling scheme is used. We used continuous in‐stream measurements of the electrical conductivity of the runoff in a small subalpine catchment (64 ha) in central Switzerland and in a very small (0·16 ha) subcatchment. Different sampling and flux integration methods were simulated for weekly water analyses. Fluxes calculated directly from grab samples are strongly biased towards high conductivities observed at low discharges. Several regressions and weighted averages have been proposed to correct for this bias. Their accuracy and precision are better, but none of these integration methods gives a consistently low bias and a low residual error. Different methods of peak sampling were also tested. Like regressions, they produce important residual errors and their bias is variable. This variability (both between methods and between catchments) does not allow one to tell a priori which sampling scheme and integration method would be more accurate. Only discharge‐proportional sampling methods were found to give essentially unbiased flux estimates. Programmed samplers with a fraction collector allow for a proportional pooling and are appropriate for short‐term studies. For long‐term monitoring or experiments, sampling at a frequency proportional to the discharge appears to be the best way to obtain accurate and precise flux estimates. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
125.
Hans A. Einstein initiated a probabilistic approach to modelling sediment transport in rivers. His formulae were based on theory and were stimulated by laboratory investigations. The theory assumes that bed load movement occurs in individual steps of rolling, sliding or saltation and rest periods. So far very few attempts have been made to measure stochastic elements in nature. For the first time this paper presents results of radio‐tracing the travel path of individual particles in a large braided gravel bed river: the Waimakariri River of New Zealand. As proposed by Einstein, it was found that rest periods can be modelled by an exponential distribution, but particle step lengths are better represented by a gamma distribution. Einstein assumed an average travel distance of 100 grain‐diameters for any bed load particle between consecutive points of deposition, but larger values of 6·7 m or 150 grain‐diameters and 6·1 m or 120 grain‐diameters were measured for two test particle sizes. Together with other available large scale field data, a dependence of the mean step length on particle diameter relative to the D50 of the bed surface was found. During small floods the time used for movement represents only 2·7% of the total time from erosion to deposition. The increase in percentage of time being used for transport means that it then has to be regarded in stochastic transport models. Tracing the flow path of bed load particles between erosion and deposition sites is a step towards explaining the interactions between sediment transport and river morphology. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
126.
Inundation patterns in two of the largest savanna floodplains of South America were studied by analysis of the 37‐GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer (Nimbus‐7 satellite). Flooded area was estimated at monthly intervals for January 1979 through to August 1987 using mixing models that account for the major landscape units with distinctive microwave emission characteristics. Results are presented separately for five subregions in each of the two floodplain regions to show the spatial as well as temporal variability in inundation patterns. The total area inundated during the 9 years varied between 2069 and 78 460 km2 in the Llanos de Moxos (also spelled as Mojos; median area, 23 383 km2) and 1278 and 105 454 km2 in the Llanos del Orinoco (median, 25 374 km2), not including the open‐water area of permanent lakes and river channels. The correlation between flooded area and river stage was used to extend the inundation records over a 30‐year period in the Moxos (1967–97) and a 58‐year period (1927–85) in the Orinoco. Interannual variability in inundation is greater in the Moxos than the Orinoco. Comparison of these data, however, with a previously published analysis of the Pantanal wetland shows that inundation patterns in these two floodplain regions are not as variable across years as they are in the Pantanal. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
127.
The variability of hillslope form and function is examined experimentally using a simple model catchment in which most landscape development parameters are either known or controlled. It is demonstrated that there is considerable variability in sediment output from similar catchments, subjected to the same hydrological processes, and for which the initial hillslope profiles are the same. The results demonstrate that, in the case of catchments with a linear initial hillslope profile, the sediment output is initially high but reduces through time, whereas for a concave initial profile the sediment output was smaller and relatively constant. Concave hillslope profiles also displayed reduced sediment output when compared with linear slopes with the same overall slope. Using this experimental model catchment data, the SIBERIA landscape evolution model was tested for its ability to predict temporal sediment transport. When calibrated for the rainfall and erodible material, SIBERIA is able to simulate mean temporal sediment output for the experimental catchment over a range of hillslope profiles and rainfall intensities. SIBERIA is also able to match the hillslope profile of the experimental catchments. The results of the study provide confidence in the ability of SIBERIA to predict temporal sediment output. The experimental and modelling data also demonstrate that, even with all geomorphic and hydrological variables being known and/or controlled, there is still a need for long‐term stream gauging to obtain reliable assessments of field catchment hydrology and sediment transport. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
128.
This article describes an investigation on runoff generation at different scales in the forested catchment of the Sperbelgraben in the Emmental region (Swiss Prealps) where studies in the field of forest hydrology have a history of 100 years. It focuses on the analysis of soil profiles and the subsequent sprinkling experiments above them (1 m2), as well as on surface runoff measurements on larger plots (50 to 110 m2). In the Sperbelgraben investigation area, two very distinct runoff reactions could be observed. On the one hand, very high production of saturation overland flow was registered on wet areas of gleyic soils, with runoff coefficients between 0·39 and 0·94 for profile irrigation. On the other hand, almost no surface runoff was measured on Cambisols, with the exception at some sites of a hydrophobic reaction detected at the beginning of storms after dry periods (coefficients for profile irrigation: 0·01–0·16). This pattern was observed during 1 m2 soil plot irrigation and on surface runoff plots. Apart from a less distinctive signal of the water‐repellent litter layer on the larger surface runoff plots, the dominant hydrological processes at the two scales are the same. The determined runoff reaction at the two scales corresponds well with information from a forest site type map describing soil and vegetation characteristics and used as a substitute for a soil map in this study. Theoretical considerations describing forest influence on flood discharge are discussed and evaluated to be in good agreement with observations. These findings are a sound foundation for application in hydrological catchment modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
129.
Fourteen popular, representative infiltration models, some physically based, some semi‐empirical and some empirical, were selected for a comparative evaluation. Using the Nash and Sutcliffe efficiency criterion, the models were evaluated and compared for 243 sets of infiltration data collected from field and laboratory tests conducted in India and the USA on soils ranging from coarse sand to fine clay. Based on a relative grading scale, the semi‐empirical Singh–Yu general model, Holtan model and Horton model were graded respectively as 6·52, 5·57 and 5·48 out of 10. The empirical Huggins and Monke model, modified Kostiakov and Kostiakov model were graded as 5·57, 5·30 and 5·22, respectively. The physically based non‐linear and linear models of Smith–Parlange were graded as 5·48 and 5·22, respectively. Other models were ranked lower than these models. All the models generally performed poorly in field tests on Georgia's sandy soils, except the Robertsdale loamy sand. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
130.
In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time‐series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time‐scales. The recorded discharge time‐series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non‐seasonal, moving‐average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non‐seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid‐latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号