首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5216篇
  免费   319篇
  国内免费   284篇
测绘学   912篇
大气科学   384篇
地球物理   364篇
地质学   609篇
海洋学   43篇
天文学   2篇
综合类   475篇
自然地理   3030篇
  2024年   24篇
  2023年   36篇
  2022年   265篇
  2021年   283篇
  2020年   290篇
  2019年   324篇
  2018年   211篇
  2017年   285篇
  2016年   266篇
  2015年   255篇
  2014年   232篇
  2013年   481篇
  2012年   267篇
  2011年   317篇
  2010年   196篇
  2009年   237篇
  2008年   259篇
  2007年   282篇
  2006年   215篇
  2005年   190篇
  2004年   172篇
  2003年   144篇
  2002年   114篇
  2001年   79篇
  2000年   83篇
  1999年   59篇
  1998年   38篇
  1997年   43篇
  1996年   29篇
  1995年   19篇
  1994年   19篇
  1993年   22篇
  1992年   8篇
  1991年   12篇
  1990年   6篇
  1989年   4篇
  1988年   11篇
  1987年   11篇
  1986年   8篇
  1985年   6篇
  1984年   7篇
  1983年   5篇
  1982年   4篇
  1977年   1篇
排序方式: 共有5819条查询结果,搜索用时 390 毫秒
101.
陈世斌 《地理研究》2005,24(6):982-991
休闲旅游作为一种旅游方式和休闲活动内容越来越受到重视,通过对杭州市“最具出游力”人群调查,运用旅游地理学分析方法发现,影响他们进行休闲旅游的因素最重要的是时间因素、交通因素和学习因素,传统观点中的经济因素地位明显下降;同时分析了不同职业、性别和年龄人员中各因素作用的差异。这种实证性的调查分析方法和结论对于休闲旅游理论和杭州市休闲产业的发展都有一定意义。  相似文献   
102.
基于城市体系的长江三角洲旅游地域系统研究   总被引:2,自引:0,他引:2  
首先分析了长江三角洲旅游资源的分布格局及长三角旅游发展的整体性现状,认为长三角旅游整体发展的协调性不足。然后从城市体系与区域旅游整体发展耦合的角度出发,引入了长江三角洲城市体系的规模结构、空间结构、交通网络结构和城市群内部经济联系的分析研究,并以此划分出了长三角两个层次的旅游地域系统,给出了长三角地域旅游城市网络体系的空间组织。最后提出了长三角区域旅游产业联动发展的对策和建议。  相似文献   
103.
洱海环境演变与大理城市发展的关系研究   总被引:1,自引:0,他引:1  
针对洱海特殊的生态环境和对大理城市发展所起的举足轻重的作用,2002年通过实地环境调查和系列历史及动态资料分析进行了洱海和大理城市之问人地关系的互动研究。概括出大理城市发展的5个阶段,结果表明人类生存场所发展的总趋势是从高处往低处下移,从山前台地向下迁往山缘冲积洪积扇平原,直至湖滨平原地带。并着重分析了变迁的原因和人类活动的影响状况,从而使人们在开发利用洱海的同时,促进人类活动和城市发展建设相得益彰,并建议选择旅游和供水为主的和谐可持续发展道路,强化政府的宏观管理,增大科技投入。  相似文献   
104.
中国城市职能分类研究综述   总被引:5,自引:1,他引:5  
城市职能分类的研究一直以来就是城市地理学研究的重要领域。在简要回顾中国城市职能分类研究的主要成果和观点的基础上,从研究的阶段性角度将城市职能分类分为研究初步展开、研究发展、研究逐步完善3个时期;并提出为适应新形势的发展,城市职能分类研究将在拓展研究对象、创新研究方法、完善数据指标体系、充分利用研究成果等方面得到完善和提高。  相似文献   
105.
The near-to-nature approach has been established as best practice for stormwater management. However, pollutant mobility within such systems and its impact on small receiving waters are partly unexplained. The study takes place in an urbanised headwater catchment in south-western Germany with an area of 0.4 km2. Runoff from roofs, roads, parking lots and gardens is collected in wells or trenches and stored in private and public dry detention basins. Accordingly, this study investigates pollutant input to a detention pond, removal efficiency and the associated effects on the receiving water.Grab samples with high temporal resolution of the receiving water (16 flood events with 315 samples and 41 baseflow samples), the three inflows of the detention basin and its outflow (four flood events with 64 samples) were taken. The outflow of the dry pond is recovered in the hydro- and chemographs of the receiving water. Runoff from roads with increased traffic volume caused the highest PAH inputs and runoff from the residential area showed the highest zinc concentrations, which partly infringe European Environmental Quality Standards. Yearly pollutant inputs (DOC, TSS, PAH, nutrients, metals) from the settlement into the tributary are reduced in the detention pond by up to 80%.  相似文献   
106.
Current land-use classifications used to assess urbanization effects on stream water quality date back to the 1980s when limited information was available to characterize watershed attributes that mediate non-point source pollution. With high resolution remote sensing and widely used GIS tools, there has been a vast increase in the availability and precision of geospatial data of built environments. In this study, we leverage geospatial data to expand the characterization of developed landscapes and create a typology that allows us to better understand the impact of complex developed landscapes across the rural to urban gradient. We assess the ability of the developed landscape typology to reveal patterns in stream water chemistry previously undetected by traditional land-cover based classification. We examine the distribution of land-cover, infrastructure, topography and geology across 3876 National Hydrography Dataset Plus catchments in the Piedmont region of North Carolina, USA. From this dataset, we generate metrics to evaluate the abundance, density and position of landscape features relative to streams, catchment outlets and topographic wetness metrics. While impervious surfaces are a key distinguishing feature of the urban landscape, sanitary infrastructure, population density and geology are better predictors of baseflow stream water chemistry. Unsupervised clustering was used to generate a distinct developed landscape typology based on the expanded, high-resolution landscape feature information. Using stream chemistry data from 37 developed headwater catchments, we compared the baseflow water chemistry grouped by traditional land-cover based classes of urbanization (rural, low, medium and high density) to our composition and structure-based classification (a nine-class typology). The typology based on 22 metrics of developed landscape composition and structure explained over 50% of the variation in NO3-N, TDN, DOC, Cl, and Br concentration, while the ISC-based classification only significantly explained 23% of the variation in TDN. These results demonstrate the importance of infrastructure, population and geology in defining developed landscapes and improving discrete classes for water management.  相似文献   
107.
A hydraulic invariance (HI)‐based methodology was developed as a tool to support implementation of storm flow control measures into land use master plans (LUMPs) for urban catchments. The methodology is based on the use of simple hydrologic analysis to compare predevelopment and postdevelopment catchment flow release scenarios. Differently from previous literature examples, for which the parcel scale is usually considered for the analysis, HI was pursued assuming the LUMP areas of transformation as the basic units for assigning storm water control measures in the form of flow release restrictions. The methodology was applied to a case study catchment in the southern part of the City of Catania (Italy), for which the LUMP re‐design has been recently proposed. Simulations were run based on the use of the EPA‐Storm Water Management Model and allowed deriving flow release restrictions in order to achieve HI at the subcatchment level for design events of different return period.  相似文献   
108.
Street and garden trees in urban areas are often exposed to advection of strong vapour pressure deficit (VPD) air that can raise the whole‐tree transpiration rate (ET), known as the oasis effect. However, urban trees tend to have small soil volume compared with natural conditions, and so they are believed to strongly regulate stomata. ET characteristics of such urban trees have not been well understood because of a lack of reliable measurement methods. Therefore, we propose a novel weighing lysimeter method and investigate the whole‐tree water balance of an isolated container‐grown Zelkova serrata to examine (a) which biotic and abiotic factors determine ET and (b) which spatial and temporal information is needed to predict ET under urban conditions. Whole‐tree water balance and environmental conditions were measured from 2010 to 2012. Although leaf area substantially increased in the study period, daily ET did not vary much. ET increased with VPD almost linearly in 2010 but showed saturation in 2011 and 2012. Root water uptake lagged ET by 40 min in 2012. These results suggest that the small planter box interfered with root growth and that hydraulic supply capacities did not increase sufficiently to support leaf area increase. From analysis of water balance, we believe that neglecting soil drought effects on street trees without irrigation in Japan will overestimate ET over 4–5 sunny days at the longest. This is unlike previous studies of forest.  相似文献   
109.
Run‐off from impervious surfaces has pervasive and serious consequences for urban streams, but the detrimental effects of urban stormwater can be lessened by disconnecting impervious surfaces and redirecting run‐off to decentralized green infrastructure. This study used a before–after‐control‐impact design, in which streets served as subcatchments, to quantify hydrologic effectiveness of street‐scale investments in green infrastructure, such as street‐connected bioretention cells, rain gardens and rain barrels. On the two residential treatment streets, voluntary participation resulted in 32.2% and 13.5% of parcels having green infrastructure installed over a 2‐year period. Storm sewer discharge was measured before and after green infrastructure implementation, and peak discharge, total run‐off volume and hydrograph lags were analysed. On the street with smaller lots and lower participation, green infrastructure installation succeeded in reducing peak discharge by up to 33% and total storm run‐off by up to 40%. On the street with larger lots and higher participation, there was no significant reduction in peak or total stormflows, but on this street, contemporaneous street repairs may have offset improvements. On the street with smaller lots, lag times increased following the first phase of green infrastructure construction, in which streetside bioretention cells were built with underdrains. In the second phase, lag times did not change further, because bioretention cells were built without underdrains and water was removed from the system, rather than just delayed. We conclude that voluntary green infrastructure retrofits that include treatment of street run‐off can be effective for substantially reducing stormwater but that small differences in design and construction can be important for determining the level of the benefit. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
110.
We calibrated an integrated flow–tracer model to simulate spatially distributed isotope time series in stream water in a 7.9‐km2 catchment with an urban area of 13%. The model used flux tracking to estimate the time‐varying age of stream water at the outlet and both urbanized (1.7 km2) and non‐urban (4.5 km2) sub‐catchments over a 2.5‐year period. This included extended wet and dry spells where precipitation equated to >10‐year return periods. Modelling indicated that stream water draining the most urbanized tributary was youngest with a mean transit time (MTT) of 171 days compared with 456 days in the non‐urban tributary. For the larger catchment, the MTT was 280 days. Here, the response of urban contributing areas dominated smaller and more moderate runoff events, but rural contributions dominated during the wettest periods, giving a bi‐modal distribution of water ages. Whilst the approach needs refining for sub‐daily time steps, it provides a basis for projecting the effects of urbanization on stream water transit times and their spatial aggregation. This offers a novel approach for understanding the cumulative impacts of urbanization on stream water quantity and quality, which can contribute to more sustainable management. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号