首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20663篇
  免费   4113篇
  国内免费   4809篇
测绘学   1065篇
大气科学   1817篇
地球物理   6417篇
地质学   11774篇
海洋学   3297篇
天文学   60篇
综合类   1419篇
自然地理   3736篇
  2024年   91篇
  2023年   252篇
  2022年   610篇
  2021年   870篇
  2020年   885篇
  2019年   981篇
  2018年   891篇
  2017年   911篇
  2016年   928篇
  2015年   1042篇
  2014年   1274篇
  2013年   1636篇
  2012年   1237篇
  2011年   1401篇
  2010年   1258篇
  2009年   1327篇
  2008年   1322篇
  2007年   1412篇
  2006年   1464篇
  2005年   1218篇
  2004年   1171篇
  2003年   1015篇
  2002年   916篇
  2001年   755篇
  2000年   719篇
  1999年   618篇
  1998年   563篇
  1997年   502篇
  1996年   430篇
  1995年   368篇
  1994年   349篇
  1993年   265篇
  1992年   224篇
  1991年   149篇
  1990年   121篇
  1989年   116篇
  1988年   70篇
  1987年   57篇
  1986年   34篇
  1985年   41篇
  1984年   19篇
  1983年   15篇
  1982年   5篇
  1981年   12篇
  1980年   6篇
  1979年   8篇
  1978年   9篇
  1977年   8篇
  1971年   3篇
  1954年   6篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
基于MODIS-NDVI、DEM和气象数据,分析柴达木盆地2000—2015年植被覆盖度(FVC)时空变化特征,并与降水、温度、日照时数、相对湿度、蒸散量和海拔进行相关、偏相关或叠加分析,探讨FVC与各环境因子的关系。结果表明:FVC整体自东南向西北内陆呈半环状递减,FVC集中在20%以下,人类活动及径流等打破植被地带性规律;2000—2015年FVC明显改善,广泛分布于盆地中西部地区,2001—2002年年际变化最显著;FVC与降水、相对湿度以正相关为主,与温度关系不显著,与日照时数和蒸散量主要为负相关,降水对FVC贡献最大,温度通过影响蒸散量等间接影响FVC,而土壤蒸发对蒸散量的影响大于植物蒸腾;FVC与等高线空间分布较吻合,FVC在2 800~2 900 m和4 600~4 700 m出现两个峰值,4 700 m以上FVC迅速降低。  相似文献   
992.
2001-2015年中国植被覆盖人为影响的时空格局   总被引:3,自引:0,他引:3  
基于MODIS-NDVI和气温、降水数据,使用基于变异系数的人为影响模型定量计算了2001-2015年中国植被覆盖人为影响,辅以趋势分析、Hurst指数等方法探讨了中国植被覆盖人为影响的时空变化特征及未来演变趋势。研究发现:① 2001-2015年,中国植被覆盖人为影响由南向北空间分异愈发明显,年均值为-0.0102,植被覆盖在人类活动影响下轻微减少,负影响面积占51.59%,略大于正影响面积。② 中国植被覆盖人为影响年际变化特征明显,整体呈负影响波动减少趋势,降速为0.5%/10a,其中正影响、负影响均呈增大趋势,正影响增速(0.3%/10a)远大于负影响(0.02%/10a)。③ 2001-2015年间,中国植被覆盖人为正影响重心向东北方向移动,负影响重心向西南方向移动,东北部植被覆盖在人为影响下不断改善,西南部人类活动对植被破坏程度不断增大。④ 中国植被覆盖人为影响主要呈负影响减少和正影响增大趋势,面积占比分别为28.14%和25.21%,生态环境趋于改善。⑤ Hurst指数分析表明,中国植被覆盖人为影响未来演变趋势的反向特征强于正向特征,主要呈人为负影响先减少后增大趋势,面积占比15.59%。  相似文献   
993.
Shrink–swell soils can cause distresses in buildings, and every year, the economic loss associated with this problem is huge. This paper presents a comprehensive system for simulating the soil–foundation–building system and its response to daily weather conditions. Weather data include rainfall, solar radiation, air temperature, relative humidity, and wind speed, all of which are readily available from a local weather station or the Internet. These data are used to determine simulation flux boundary conditions. Different methods are proposed to simulate different boundary conditions: bare soil, trees, and vegetation. A coupled hydro‐mechanical stress analysis is used to simulate the volume change of shrink–swell soils due to both mechanical stress and water content variations. Coupled hydro‐mechanical stress‐jointed elements are used to simulate the interaction between the soil and the slab, and general shell elements are used to simulate structural behavior. All the models are combined into one finite element program to predict the entire system's behavior. This paper first described the theory for the simulations. A site in Arlington, Texas, is then selected to demonstrate the application of the proposed system. Simulation results are shown, and a comparison between measured and predicted movements for four footings in Arlington, Texas, over a 2‐year period is presented. Finally, a three‐dimensional simulation is made for a virtual residential building on shrink–swell soils to identify the influence of various factors. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
994.
Soil water repellency is a widespread phenomenon with the capacity to alter hydrological and geomorphological processes. Water repellency decays with time, and the consequences are only of concern during the timescale at which the water repellency persists. This study aimed to characterize the influence of temperature and humidity on the breakdown of water repellency. Apparent contact angle measurements were carried out on samples consisting of sand treated with stearic acid as well as naturally repellent dune sands and composts. Temperature and humidity were controlled using a cooled incubator and a purpose designed enclosed box in which humidity could be raised or lowered. Results showed the contact angle of the stearic‐acid‐treated sands decayed with time and that there was a significant increase with stearic acid concentration. For all samples, the decay in apparent contact angle could be described with a continuous breakdown model. The stearic‐acid‐treated sands showed a significant increase in contact angle with relative humidity at a temperature of 10 and 20 °C. These differences diminished with increasing temperature. Similar results were seen for the dune sands and composts. Despite the influence of temperature and humidity on contact angles, there was no significant change in the rate at which the contact angle decayed in any sample. Absolute humidity was found to provide a more relevant indicator than relative humidity when assessing the influence of humidity on repellency over a range of temperatures. The contact angle initially increased with absolute humidity before plateauing owing to the confounding effect of temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
995.
Biodiversity loss, climate change, and increased freshwater consumption are some of the main environmental problems on Earth. Mountain ecosystems can reduce these threats by providing several positive influences, such as the maintenance of biodiversity, water regulation, and carbon storage, amongst others. The knowledge of the history of these environments and their response to climate change is very important for management, conservation, and environmental monitoring programs. The genesis of the soil organic matter of the current upper montane vegetation remains unclear and seems to be quite variable depending on location. Some upper montane sites in the very extensive coastal Sea Mountain Range present considerable organic matter from the late Pleistocene and other from only the Holocene. Our study was carried out on three soil profiles (two cores in grassland and one in forest) on the Caratuva Peak of the Serra do Ibitiraquire (a sub-range of Sea Mountain Range – Serra do Mar) in Southern Brazil. The δ13C isotopic analyses of organic matter in soil horizons were conducted to detect whether C3 or C4 plants dominated the past communities. Complementarily, we performed a pollen analysis and 14C dating of the humin fraction to obtain the age of the studied horizons. Except for a short and probably drier period (between 6000 and 4500 cal yr BP), C3 plants, including ombrophilous grasses and trees, have dominated the highlands of the Caratuva Peak (Pico Caratuva), as well as the other uppermost summits of the Serra do Ibitiraquire, since around 9000 cal yr BP. The Caratuva region represents a landscape of high altitude grasslands (campos de altitude altomontanos or campos altomontanos) and upper montane rain/cloud forests with soils that most likely contain some organic matter from the late Pleistocene, as has been reported in Southern and Southeastern Brazil for other sites. However, our results indicate that the studied deposits (near the summit) are from the early to late Holocene, when somewhat wetter and warmer conditions (since around 9000 cal yr BP) enabled a stronger colonization of the ridge of Pico Caratuva by mainly C3 plants, especially grassland species. However, at the same time, even near the summit, the soil core from the forest site already presented the current physiognomy (or a shrubby/elfin or successional forest), indicating that the colonization of the neighboring uppermost saddles and valleys were probably populated mainly by upper montane forest species.  相似文献   
996.
Soil–water interaction is a pivotal process in many underwater geohazards such as underwater landslides where soil sediments gradually evolve into turbidity currents after interactions with ambient water. Due to the large deformations, multiphase interactions and phase changes this involves, investigations from numerical modelling of the transition process have been limited so far. This study explores a simple numerical replication of such soil–water mixing with respect to changes in average strength using smoothed particle hydrodynamics (SPH). A uniform viscoplastic model is used for both the solid-like and fluid-like SPH particles. The proposed numerical solution scheme is verified by single-phase dam break tests and multiphase simple shear tests. SPH combinations of solid-like and fluid-like particles can replicate the clay–water mixture as long as the liquidity index of the solid-like particles is larger than unity. The proposed numerical scheme is shown to capture key features of an underwater landslide such as hydroplaning, water entrainment and wave generation and thus shows promise as a tool to simulate the whole process of subaquatic geohazards involving solid–fluid transition during mass transport.  相似文献   
997.
Near-surface remote sensing (e.g., digital cameras) has played an important role in capturing plant phenological metrics at either a focal or landscape scale. Exploring the relationship of the digital image-based greenness index (e.g., Gcc, green chromatic coordinate) with that derived from satellites is critical for land surface process research. Moreover, our understanding of how well Gcc time series associate with environmental variables at field stations in North American prairies remains limited. This paper investigated the response of grass Gcc to daily environmental factors in 2018, such as soil moisture (temperature), air temperature, and solar radiation. Thereafter, using a derivative-based phenology extraction method, we evaluated the correspondence between key phenological events (mainly including start, end and length of growing season, and date with maximum greenness value) derived from Gcc, MODIS and VIIRS NDVI (EVI) for the period 2015-2018. The results showed that daily Gcc was in good agreement with ground-level environmental variables. Additionally, multivariate regression analysis identified that the grass growth in the study area was mainly affected by soil temperature and solar radiation, but not by air temperature. High frequency Gcc time series can respond immediately to precipitation events. In the same year, the phenological metrics retrieved from digital cameras and multiple satellites are similar, with spring phenology having a larger relative difference. There are distinct divergences between changing rates in the greenup and senescence stages. Gcc also shows a close relationship with growing degree days (GDD) derived from air temperature. This study evaluated the performance of a digital camera for monitoring vegetation phenological metrics and related climatic factors. This research will enable multiscale modeling of plant phenology and grassland resource management of temperate prairie ecosystems.  相似文献   
998.
采用有限元方法,针对青藏高原东南缘建立更细致、更精确的三维有限元弹性模型。选取9种不同的应力边界条件,分别进行优化分析后处理,将对应台站形变模拟值与GPS实测值进行误差分析,最终选取最佳方案作为古构造应力场。结果表明,青藏高原东南缘4 Ma BP的古应力场主要起源于中国大陆周围板块的相互作用,特别是印度板块NNE向强烈碰撞作用,成为中国大陆尤其是西南部青藏高原地区构造应力场最主要的动力来源,控制各个块体相互作用的方式和运动格局。青藏高原东南缘古应力场主要包括几个力源:西北部青藏高原侧向挤压造成的WE向应力约105 MPa;西南部直接来自于印度板块的NE-WS向应力约70 MPa;南部NS向作用力33 MPa;东南部扬子块体侧向NW-SE阻挡力56 MPa;北东部受扬子块体强烈EW向阻挡力90 MPa。这些力源共同作用于青藏高原东南缘,形成现今复杂应力场。
  相似文献   
999.
为进一步研究条斑紫菜促分裂原活化激酶家族PyMAPK5的下游互作蛋白,理解其生物学功能,本研究通过酵母双杂交的方法进行其相互作用蛋白的筛选。提取不同温度和失水逆境胁迫下的RNA,利用Invitrogen体系构建条斑紫菜酵母双杂交cDNA文库,其库容为1.44×107CFU,重组率为91.8%。以pGBKT7-PyMAPK5为诱饵蛋白载体,利用共转化方法,从文库中筛选得到26个与PyMAPK5互作的候选蛋白。候选蛋白集中在光系统II相关蛋白、捕光蛋白、微管蛋白、ATP酶、GTP结合蛋白及假设蛋白等。微管蛋白、捕光蛋白、光系统II蛋白一对一验证结果为阳性,表明在酵母体内存在互作。本研究为阐明条斑紫菜PyMAPK5与其互作蛋白的关系及解析PyMAPK5下游作用机制奠定了基础。  相似文献   
1000.
Stiffened deep mixed (SDM) column is a new ground improvement technique to improve soft soil, which can be used to increase bearing capacity, reduce deformation, and enhance stability of soft soil. This technique has been successfully adopted to support the highway and railway embankments over soft soils in China and other countries. However, there have been limited investigations on its consolidation under embankment loading. This paper developed an analytical solution for the consolidation of embankment over soft soil with SDM column in which core pile is equal to or shorter than outer DM column. The consolidation problem was simplified as a consolidation of composite soil considering the load shear effect of core pile. The developed solution was verified by a comparison with the results computed by three-dimensional (3-D) finite element analysis. A parametric study based on the derived solution was conducted to investigate influence factors—length of core pile, diameter of core pile, diameter of SDM column, modulus of DM column, and permeability coefficient of DM column—on the consolidation behavior of SDM column-supported embankment over soft soil. The developed solution was applied to a case history of SDM column-supported embankment, and a good agreement was found between the predictions and the field measurements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号