首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18673篇
  免费   3735篇
  国内免费   3962篇
测绘学   841篇
大气科学   2090篇
地球物理   5287篇
地质学   10021篇
海洋学   3587篇
天文学   92篇
综合类   1443篇
自然地理   3009篇
  2024年   110篇
  2023年   237篇
  2022年   541篇
  2021年   765篇
  2020年   771篇
  2019年   916篇
  2018年   741篇
  2017年   833篇
  2016年   801篇
  2015年   908篇
  2014年   1166篇
  2013年   1414篇
  2012年   1138篇
  2011年   1251篇
  2010年   1129篇
  2009年   1158篇
  2008年   1206篇
  2007年   1216篇
  2006年   1273篇
  2005年   1120篇
  2004年   997篇
  2003年   889篇
  2002年   800篇
  2001年   711篇
  2000年   670篇
  1999年   561篇
  1998年   497篇
  1997年   467篇
  1996年   385篇
  1995年   353篇
  1994年   311篇
  1993年   265篇
  1992年   188篇
  1991年   130篇
  1990年   95篇
  1989年   104篇
  1988年   64篇
  1987年   42篇
  1986年   33篇
  1985年   33篇
  1984年   19篇
  1983年   12篇
  1982年   5篇
  1981年   11篇
  1980年   6篇
  1979年   6篇
  1978年   14篇
  1973年   2篇
  1971年   3篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
911.
Three‐dimensional seismic data were used to infer how bottom currents control unidirectional channel migration. Bottom currents flowing towards the steep bank would deflect the upper part of sediment gravity flows at an orientation of 1° to 11° to the steep bank, yielding a helical flow circulation consisting of a faster near‐surface flow towards the steep bank and a slower basal return flow towards the gentle bank. This helical flow model is evidenced by the occurrence of bigger, muddier (suggested by low‐amplitude seismic reflections) lateral accretion deposits and gentle channel wall with downlap terminations on the gentle bank and by smaller, sandier (indicated by high‐amplitude seismic reflectors) channel fills and steep channel walls with truncation terminations on the steep bank. This helical flow circulation promotes asymmetrical depositional patterns with dipping accretion sets restricted to the gentle bank, which restricts the development of sinuosity and yields unidirectional channel migration. These results aid in obtaining a complete picture of flow processes and sedimentation in submarine channels.  相似文献   
912.
The microstructures of turbiditic and hemipelagic muds and mudstones were investigated using a scanning electron microscope to determine whether there are microstructural features that can differentiate turbiditic from hemipelagic sedimentary processes. Both types of muddy deposits are, in general, characterized by randomly‐oriented clay particles. However, turbiditic muds and mudstones also characteristically contain aggregates of ‘edge‐to‐face’ contacts between clay particles with long‐axis lengths of up to 30 μm. Based on observations of the clay fabric of the experimentally‐formed muds settled from previously agitated muddy fluids, these types of aggregates, hereafter referred to as ‘aggregates of clay particles’, are interpreted as having been formed by the collision of component flocs in turbulent fluids. Furthermore, some aggregates of clay particles have ‘face‐to‐face’ contacts between clay particles; this is similar to face‐to‐face aggregates characteristically developed in fluid‐mud deposits that are commonly recognized only in turbiditic mudstones, indicating the possibility of a final stage of deposition under highly‐dense conditions, such as temporary fluid muds. In conjunction with earlier proposed lithofacies‐based and ichnofacies‐based criteria, aggregates of clay particles should be useful for the differentiation of turbiditic and hemipelagic muddy deposits, particularly with limited volumes of non‐oriented samples from deep‐water successions.  相似文献   
913.
The Ribeira Belt (Brazil) is a Neoproterozoic collisional-related feature that was located in a south-central position in West Gondwana. We present quantitative data on finite strain, flow vorticity and deformation temperatures for the Curitiba Terrane, a major segment of the southern Ribeira Belt. Six deformation phases (D1-D6) related with crustal thickening and exhumation were recognized. D1 and D2-related microstructures are preserved exclusively within porphyroblasts, in part grown during stages of high-pressure (∼9–12 kbar) isobaric heating after crustal thickening. D3 phase was active from peak metamorphism attained in contrasting crustal levels (810–400 °C), to the early stage of exhumation (500–400 °C), as indicated by petrological, microstructural and quartz c-axis fabric evidence. Kinematic vorticity results indicate that the SL3 mylonitic fabric resulted from a simple shear-dominated deformation related with westward thrusting. North-verging overturned D4 folds with E-W-trending subhorizontal axes derived from a pure shear-dominated deformation. Regional D5 open folds with subvertical axes and NNE-SSW-trending traces were produced by indentation tectonics. D6 phase comprises retrograde orogen-parallel transcurrent shear zones related with scape tectonics. Geochronological data indicate that D3-D6 phases occurred between 584 and 580 Ma, suggesting a fast exhumation rate of ∼8 mm/year for the deepest rocks from the southern Ribeira Belt.  相似文献   
914.
保证Cd的高回收率以及彻底的Sn干扰去除是获得精确镉同位素组成的前提,目前报道的多种Cd分离与纯化方法获得的Cd回收率有较大差异(42.6%~99.8%),且去除Sn干扰的效果也不同(去除率在87.8%~97.4%之间),Cd回收率和Sn去除率均不理想。本文对前人报道的分离方法进行对比实验,发现0.1 mol/L氢溴酸-0.5 mol/L硝酸是分离Cd和Sn的有效试剂,增加该组混合酸的用量可淋洗出样品中更多的Sn且不会损失Cd,当混合酸的淋洗用量增加至30 mL时,Sn的淋洗率达到99.8%以上,Cd的回收率亦达到99.0%±0.5%,可满足土壤样品镉同位素的测定要求。本工作为获得高精度的镉同位素组成奠定了基础,为研究土壤环境中镉的污染来源提供了技术手段。  相似文献   
915.
何海军 《地质与勘探》2016,52(3):584-593
本文以南海北部湾SO-31沉积柱为研究对象,研究了14C年代学和粘土矿物学特征,并对部分全球气候事件进行了对比,为古环境、古气候的恢复提供基础资料,也为全球重大气候事件在该区域的响应提供信息。结果显示全新世以来地层沉积正常,平均沉积速率为0.57mm/a。粘土成分主要由蒙脱石、伊利石、高岭石和绿泥石组成,组合类型为蒙脱石-伊利石-高岭石-绿泥石型。全新世以来环境气候演变可划分为五个阶段:低温期阶段、干湿交替的寒冷气候阶段、逐渐升温阶段、干旱温暖气候阶段、湿热阶段。气候在每个阶段背景下还存在一些次级波动,总体趋势为干湿交替,温度逐渐上升。由于海域环境及矿物指标的影响,北部湾SO-31沉积柱粘土矿物记录的降温事件时间比其他指标记录的新仙女木降温事件发生时间滞后500~800a。  相似文献   
916.
The effects of surface flux parameterizations on tropical cyclone(TC) intensity and structure are investigated using the Advanced Research Weather Research and Forecasting(WRF-ARW) modeling system with high-resolution simulations of Typhoon Morakot(2009).Numerical experiments are designed to simulate Typhoon Morakot(2009) with different formulations of surface exchange coefficients for enthalpy(C_K) and momentum(C_D) transfers,including those from recent observational studies based on in situ aircraft data collected in Atlantic hurricanes.The results show that the simulated intensity and structure are sensitive to C_K and C_D,but the simulated track is not.Consistent with previous studies,the simulated storm intensity is found to be more sensitive to the ratio of C_K/C_D than to C_K or C_D alone.The pressure-wind relationship is also found to be influenced by the exchange coefficients,consistent with recent numerical studies.This paper emphasizes the importance of C_D and C_K on TC structure simulations.The results suggest that C_D and C_K have a large impact on surface wind and flux distributions,boundary layer heights,the warm core,and precipitation.Compared to available observations,the experiment with observed C_D and C_K generally simulated better intensity and structure than the other experiments,especially over the ocean.The reasons for the structural differences among the experiments with different C_D and C_K setups are discussed in the context of TC dynamics and thermodynamics.  相似文献   
917.
Roots are responsible for the uptake of water and nutrients by plants and have the plasticity to dynamically respond to different environmental conditions. However, most land surface models currently prescribe rooting profiles as a function only of vegetation type, with no consideration of the surroundings. In this study, a dynamic rooting scheme, which describes root growth as a compromise between water and nitrogen availability, was incorporated into CLM4.5 with carbon–nitrogen(CN) interactions(CLM4.5-CN) to investigate the effects of a dynamic root distribution on eco-hydrological modeling. Two paired numerical simulations were conducted for the Tapajos National Forest km83(BRSa3) site and the Amazon, one using CLM4.5-CN without the dynamic rooting scheme and the other including the proposed scheme. Simulations for the BRSa3 site showed that inclusion of the dynamic rooting scheme increased the amplitudes and peak values of diurnal gross primary production(GPP) and latent heat flux(LE) for the dry season, and improved the carbon(C) and water cycle modeling by reducing the RMSE of GPP by 0.4 g C m~(-2)d~(-1), net ecosystem exchange by 1.96 g C m~(-2)d~(-1), LE by 5.0 W m~(-2), and soil moisture by 0.03 m~3m~(-3), at the seasonal scale, compared with eddy flux measurements, while having little impact during the wet season. For the Amazon, regional analysis also revealed that vegetation responses(including GPP and LE) to seasonal drought and the severe drought of 2005 were better captured with the dynamic rooting scheme incorporated.  相似文献   
918.
Trends in precipitation are critical to water resources. Considerable uncertainty remains concerning the trends of regional precipitation in response to global warming and their controlling mechanisms. Here, we use an interannual difference method to derive trends of regional precipitation from GPCP(Global Precipitation Climatology Project) data and MERRA(ModernEra Retrospective Analysis for Research and Applications) reanalysis in the near-global domain of 60?S–60?N during a major global warming period of 1979–2013. We find that trends of regional annual precipitation are primarily driven by changes in the top 30% heavy precipitation events, which in turn are controlled by changes in precipitable water in response to global warming, i.e., by thermodynamic processes. Significant drying trends are found in most parts of the U.S. and eastern Canada,the Middle East, and eastern South America, while significant increases in precipitation occur in northern Australia, southern Africa, western India and western China. In addition, as the climate warms there are extensive enhancements and expansions of the three major tropical precipitation centers–the Maritime Continent, Central America, and tropical Africa–leading to the observed widening of Hadley cells and a significant strengthening of the global hydrological cycle.  相似文献   
919.
Responsible water management in an era of globalised supply chains needs to consider both local and regional water balances and international trade. In this paper, we assess the water footprints of total final demand in the EU-27 at a very detailed product level and spatial scale—an important step towards informed water policy. We apply the multi-regional input-output (MRIO) model EXIOBASE, including water data, to track the distribution of water use along product supply chains within and across countries. This enables the first spatially-explicit MRIO analysis of water embodied in Europe’s external trade for almost 11,000 watersheds world-wide, tracing indirect (“virtual”) water consumption in one country back to those watersheds where the water was actually extracted. We show that the EU-27 indirectly imports large quantities of blue and green water via international trade of products, most notably processed crop products, and these imports far exceed the water used from domestic sources. The Indus, Danube and Mississippi watersheds are the largest individual contributors to the EU-27’s final water consumption, which causes large environmental impacts due to water scarcity in both the Indus and Mississippi watersheds. We conclude by sketching out policy options to ensure that sustainable water management within and outside European borders is not compromised by European consumption.  相似文献   
920.
Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号