首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   29篇
  国内免费   49篇
测绘学   7篇
大气科学   2篇
地球物理   21篇
地质学   134篇
海洋学   21篇
综合类   6篇
自然地理   44篇
  2023年   4篇
  2022年   14篇
  2021年   14篇
  2020年   12篇
  2019年   16篇
  2018年   9篇
  2017年   3篇
  2016年   12篇
  2015年   12篇
  2014年   11篇
  2013年   13篇
  2012年   16篇
  2011年   12篇
  2010年   10篇
  2009年   10篇
  2008年   11篇
  2007年   14篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
1.
中国大别山东南缘首次发现大坝陨坑构造   总被引:2,自引:0,他引:2  
简介首次在大别山东南缘安徽省境内发现的大坝陨坑构造。经初步评价,知陨坑呈椭圆形,长轴呈北北东向,长约19km,短轴长约12km,最大坑深约2km,是一个有中央隆起区的复杂型陨坑。在卫片上陨坑显示环形影像,地貌形态为一洼地。陨坑基座保存尚好,可对它直观和追索陨坑构造边界。形成于230Ma左右的各类撞击变质岩石系列齐全,其中含有柯石英等典型的撞击变质矿物及撞击碎理等超微构造,特别是在陨坑基座内壁普遍发现有鉴别陨坑构造最可靠的标志——干裂自角砾岩,都证明大坝环形影像是一个典型的陨星撞击坑构造。它的发现,具有很大的科学及经济意义,对今后褶皱山区寻找和研究陨坑构造具有示范和指导作用,同时大大丰富了建设大别山世界地质公园的地质依据。无庸置疑此发现将促进大别山旅游业的发展及陨星撞击科普知识的传播。  相似文献   
2.
Influence of gas production induced volumetric strain on permeability of coal   总被引:10,自引:0,他引:10  
Summary The gas permeability of a coalbed, unlike that of conventional gas reservoirs, is influenced during gas production not only by the simultaneous changes in effective stress and gas slippage, but also by the volumetric strain of the coal matrix that is associated with gas desorption. A technique for conducting laboratory experiments to separate these effects and estimate their individual contribution is presented in this paper. The results show that for a pressure decrease from 6.2 to 0.7 MPa, the total permeability of the coal sample increased by more than 17 times. A factor of 12 is due to the volumetric strain effect, and a factor of 5 due to the gas slippage effect. Changes in permeability and porosity with gas depletion were also estimated using the measured volumetric strain and the matchstick reservoir model geometry for flow of gas in coalbeds. The resulting variations were compared with results obtained experimentally. Furthermore, the results show that when gas pressure is above 1.7 MPa, the effect of volumetric strain due to matrix shrinkage dominates. As gas pressure falls below 1.7 MPa, both the gas slippage and matrix shrinkage effects play important roles in influencing the permeability. Finally, the change in permeability associated with matrix shrinkage was found to be linearly proportional to the volumetric strain. Since volumetric strain is linearly proportional to the amount of gas desorbed, the change in permeability is a linear function of the amount of desorbing gas.  相似文献   
3.
Measurements of the activation energy of electrical conductance and desiccation rates on subtidal marine algae from Florida were compared to similar data from the Bay of Fundy, Nova Scotia, on intertidal marine algae frequently subjected to long periods of exposure to air. We have developed a method for calculating the reaction rate constant of desiccation of fully hydrated marine algae. Values of activation energies and desiccation rate constants are consistent with the requirements for survival of these algae under widely different environmental conditions.  相似文献   
4.
地铁隧道开挖引起地表塌陷分析   总被引:6,自引:1,他引:6  
深圳富水软弱地层地铁隧道开挖中出现的工作面失稳及由此引起的地表塌陷是地铁安全施工中极其重要的方面,对施工安全、进度都有较大影响,同时也对整个工程造成巨大的经济损失。通过对深圳地铁Ⅰ期工程土建施工中全线部分暗挖标段出现的工作面失稳、地表塌陷工程实践和现场监测结果分析,特别着重对连续2次出现地表塌陷的3A标暗挖隧道研究,从隧道上覆地层物理力学性质参数、地层变形监测分析及施工工艺原因3方面阐述了地表塌陷的原因。明确提出剪切破坏线和失水空洞区的概念,确定出引发地表塌陷的主导因素为施工工艺原因。建议针对该类地层条件,应做好超前地质预报.适当调整预加固参数.加强隧道结构和地表的动态变形监测,施工技术人员做到准确了解施工现场动态,及时调整施工工艺参数,以保证隧道的安全施工。分析结果对深圳地铁Ⅱ期工程施工及类似地层条件地下工程施工提供科学预测、预防地表塌陷的方法和技术措施,达到地铁隧道施工中经济效益与安全施工的统一。  相似文献   
5.
The ability to model and predict the formation of desiccation cracks is potentially beneficial in many applications such as clay liner design, earth dam construction, and crop science, etc. However, most studies have focused on statistical analysis of crack patterns and qualitative study of contributing factors to crack development rather than prediction. Because it is exceedingly difficult to capture the nonlinear processes during desiccation in analytical modelling, most such models handle crack formation without considering variation of material properties with time, and are unattractive to use in realistic modelling. The data obtained from laboratory experiments on clay soil desiccating in moulds were used as a basis to develop a more refined model of desiccation cracking. In this study, the properties, such as matric suction, stiffness and tensile strength of soil, and base adhesion, could be expressed approximately as functions of moisture content. The initial conditions and the development of suction due to desiccation and the varying material properties were inputted to UDEC, a distinct element code, using its internal programming language FISH. The model was able to capture some essential physical aspects of crack evolution in soil contained in moulds with varying lengths, heights, and materials of construction. Extension of this methodology is potentially beneficial not only for modelling desiccation cracking in clay, but also in other systems with evolving material properties such as concrete structures and road pavements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
Drying of deformable porous media results in their shrinkage, and it may cause cracking provided that shrinkage deformations are hindered by kinematic constraints. This is the motivation to develop a thermodynamics‐based microporoelasticity model for the assessment of cracking risk in partially saturated porous geomaterials. The study refers to 3D representative volume elements of porous media, including a two‐scale double‐porosity material with a pore network comprising (at the mesoscale) 3D mesocracks in the form of oblate spheroids, and (at the microscale) spherical micropores of different sizes. Surface tensions prevailing in all interfaces between solid, liquid, and gaseous matters are taken into account. To establish a thermodynamics‐based crack propagation criterion for a two‐scale double‐porosity material, the potential energy of the solid is derived, accounting—in particular—for mesocrack geometry changes (main original contribution) and for effective micropore pressures, which depend (due to surface tensions) on the pore radius. Differentiating the potential energy with respect to crack density parameter yields the thermodynamical driving force for crack propagation, which is shown to be governed by an effective macrostrain. It is found that drying‐related stresses in partially saturated mesocracks reduce the cracking risk. The drying‐related effective underpressures in spherical micropores, in turn, result in a tensile eigenstress of the matrix in which the mesocracks are embedded. This way, micropores increase the mesocracking risk. Model application to the assessment of cracking risk during drying of argillite is the topic of the companion paper (Part II). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
This article presents the settlement of drilled shafts resulting from their structural deformations. Although drilled shafts are widely used as foundations for settlement-sensitive structures such as bridges and high-rise buildings, the structural deformations of drilled shafts are not typically taken into account in the design process. However, if unexpected structural deformations of drilled shafts cause additional settlement to the foundation, the serviceability of the superstructure can be jeopardized. Unfortunately, very few research efforts have been made to quantify the structural deformation of drilled shafts; this needs to be addressed to accurately predict the settlement of drilled shafts. In this study, we investigate the effect of structural deformation on displacement of axially loaded drilled shafts. Finite element analyses were performed to quantify the structural deformation of drilled shafts. The analysis results indicated that the structural deformation of drilled shafts could be quite significant for long drilled shafts. The main factors that affected the structural deformation of drilled shafts were found to be pile length, the material properties of drilled shafts, and the relative humidity of surrounding soil. An approximate equation is proposed to estimate the long-term deformation of drilled shafts.  相似文献   
8.
李红梅  石逊 《探矿工程》2021,48(11):30-35
邢台白涧铁矿南区地层岩石破碎、部分地层含角砾、胶结性差、漏失严重,钻探施工中存在掉块卡钻、缩径、坍塌、埋钻及孔内泥浆全部漏失等难题。通过优化钻孔结构、使用新工艺、新方法,合理选择钻进参数,采用绳索取心钻进配合预留技术套管,有效解决了上部煤系地层的坍塌问题;采用反丝套管的方法,极大地减轻了由于地层缩径、掉块引起的套管下不到位、起拔困难等风险;常规型绳索取心钻杆替代套管方法的采用,提高了含角砾、松散地层的穿过速度,减少了钻探工作量的报废,加快了施工进度;特别是高胎体双水口钻头的使用,提高了钻进效率,节约了钻探施工成本,项目得以如期完成。  相似文献   
9.
Strong winds are a characteristic feature of UK upland areas. Despite this, understanding of aeolian processes in upland environments of the UK is limited. This paper presents direct measurements and observations of blanket peat erosion by wind action during a two week period of desiccation in the North Pennines, Northern England. A circular configuration of mass flux sediment samplers was used to collect peat eroded by wind action from 16 cardinal compass directions. Meteorological conditions (wind speed, wind direction, precipitation and temperature) were recorded by an automatic weather station set up adjacent to the site. Surface desiccation led to peat crust erosion and dust deflation. During short (≤1 hour) periods of precipitation, wind‐driven rainfall also caused erosion. Typically, dust flux rates were up to two orders of magnitude lower than recorded during periods of sustained wet weather. Measurements demonstrate the hitherto unreported rapid switch in process regime between wind‐driven rainfall and dry blow deflation in blanket peat environments. Dry blow processes of blanket peat erosion may become more important in UK upland areas if climate change promotes more frequent surface desiccation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
10.
文章通过膨胀土的分布、成因类型、成分和结构特征及物理、力学性质的分析 ,证实膨胀土并非是理想的持力层  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号